Projection Volumes of Hyperplane Arrangements

被引:17
作者
Klivans, Caroline J. [1 ,2 ]
Swartz, Ed [3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Angle sum; Characteristic polynomial; Hyperplane arrangement; Zonotope;
D O I
10.1007/s00454-011-9363-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for any finite real hyperplane arrangement the average projection volumes of the maximal cones are given by the coefficients of the characteristic polynomial of the arrangement. This settles the conjecture of Drton and Klivans that this held for all finite real reflection arrangements. The methods used are geometric and combinatorial. As a consequence, we determine that the angle sums of a zonotope are given by the characteristic polynomial of the order dual of the intersection lattice of the arrangement.
引用
收藏
页码:417 / 426
页数:10
相关论文
共 13 条
[1]  
CAMENGA K, 2006, BEITRAGE ALGEBRA GEO, V47, P447
[2]  
De Concini C., 2006, ATTI ACCAD NA SFMNRL
[3]  
Denham G., 2008, ATTI ACCAD NA SFMNRL
[4]   A GEOMETRIC INTERPRETATION OF THE CHARACTERISTIC POLYNOMIAL OF REFLECTION ARRANGEMENTS [J].
Drton, Mathias ;
Klivans, Caroline J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (08) :2873-2887
[5]  
Felman D., 2009, AM MATH MONTHLY, V116
[6]   ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS [J].
GREENE, C ;
ZASLAVSKY, T .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (01) :97-126
[7]   ANGLE SUMS OF CONVEX POLYTOPES [J].
PERLES, MA ;
SHEPHARD, GC .
MATHEMATICA SCANDINAVICA, 1967, 21 (02) :199-&
[8]  
Rota Gian-Carlo, 1964, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, V2
[9]  
Shephard G.C., 1967, CANAD J MATH, V19
[10]  
Stanley R., 2007, GEOMETRIC COMBINATOR, V13