On the L∞ structure of Poisson gauge theory

被引:3
作者
Abla, O. [1 ]
Kupriyanov, V. G. [2 ,3 ]
Kurkov, M. A. [4 ,5 ]
机构
[1] Univ Fed ABC, CCNH, BR-09210580 Santo Andre, SP, Brazil
[2] Univ Fed ABC, CMCC, BR-09210580 Santo Andre, SP, Brazil
[3] Tomsk State Univ, Phis Dept, Tomsk 634050, Russia
[4] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6, I-80126 Naples, Italy
[5] Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6, I-80126 Naples, Italy
基金
巴西圣保罗研究基金会;
关键词
homotopy algebras; gauge symmetry; non-commutative geometry; FIELD-THEORY; QUANTIZATION;
D O I
10.1088/1751-8121/aca7d1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Poisson gauge theory is a semi-classical limit of full non-commutative gauge theory. In this work we construct an L(infinity)(ful)l algebra which governs both the action of gauge symmetries and the dynamics of the Poisson gauge theory. We derive the minimal set of non-vanishing e-brackets and prove that they satisfy the corresponding homotopy relations. On the one hand, it provides new explicit non-trivial examples of L-infinity algebras. On the other hand, it can be used as a starting point for bootstrapping the full non-commutative gauge theory. The first few brackets of such a theory are constructed explicitly in the text. In addition we show that the derivation properties of l-brackets on L-infinity(full) with respect to the truncated product on the exterior algebra are satisfied only for the canonical non-commutativity. In general, L-infinity(full) does not have a structure of P-infinity algebra.
引用
收藏
页数:32
相关论文
共 37 条
[1]   Coproduct and star product in field theories on Lie-algebra noncommutative space-times [J].
Amelino-Camelia, G ;
Arzano, M .
PHYSICAL REVIEW D, 2002, 65 (08) :840441-840448
[2]   On the uniqueness of L∞ bootstrap: Quasi-isomorphisms are Seiberg-Witten maps [J].
Blumenhagen, Ralph ;
Brinkmann, Max ;
Kupriyanov, Vladislav ;
Traube, Matthias .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
[3]   Bootstrapping non-commutative gauge theories from L∞ algebras [J].
Blumenhagen, Ralph ;
Brunner, Ilka ;
Kupriyanov, Vladislav ;
Luest, Dieter .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05)
[4]   Relative formality theorem and quantisation of coisotropic submanifolds [J].
Cattaneo, Alberto S. ;
Felder, Giovanni .
ADVANCES IN MATHEMATICS, 2007, 208 (02) :521-548
[5]   L∞-algebras of Einstein-Cartan-Palatini gravity [J].
Ciric, Marija Dimitrijevic ;
Giotopoulos, Grigorios ;
Radovanovic, Voja ;
Szabo, Richard J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
[6]   Noncommutative field theory from angular twist [J].
Ciric, Marija Dimitrijevic ;
Konjik, Nikola ;
Kurkov, Maxim A. ;
Lizzi, Fedele ;
Vitale, Patrizia .
PHYSICAL REVIEW D, 2018, 98 (08)
[7]  
Dimitrijevic M, 2003, EUR PHYS J C, V31, P129, DOI 10.1140/epjc/s2003-01309-y
[8]  
Dimitrijevic M., 2005, JHEP-Journal of High Energy Physics, V2005, DOI 10.1088/1126-6708/2005/09/068
[9]   3D quantum gravity and effective noncommutative quantum field theory [J].
Freidel, L ;
Livine, ER .
PHYSICAL REVIEW LETTERS, 2006, 96 (22)
[10]   The action principle for a system of differential equations [J].
Gitman, D. M. ;
Kupriyanov, V. G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (33) :10071-10081