APPLICATIONS OF VARIATIONAL METHODS TO AN ANTI-PERIODIC BOUNDARY VALUE PROBLEM OF A SECOND-ORDER DIFFERENTIAL SYSTEM

被引:2
作者
Tian, Yu [1 ]
Zhang, Yajing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
美国国家科学基金会;
关键词
Anti-periodic boundary value problem; variational methods; Mountain pass theorem; EVOLUTION-EQUATIONS; PERIODIC-SOLUTIONS; EXISTENCE; INTERPOLATION;
D O I
10.1216/RMJ-2017-47-5-1721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the existence of multiple solutions to a second order anti-periodic boundary value problem {x(t) + Mx(t) + del F(t, x(t)) = 0 almost every t is an element of [0, T], x(0) = -x(T) x(0) = -x(T) by using variational methods and critical point theory. Furthermore, we obtain the existence of periodic solutions for corresponding second-order differential systems.
引用
收藏
页码:1721 / 1741
页数:21
相关论文
共 33 条
[1]   HALF-STRING OSCILLATOR APPROACH TO STRING FIELD-THEORY (GHOST SECTOR-I) [J].
ABDURRAHMAN, A ;
ANTON, F ;
BORDES, J .
NUCLEAR PHYSICS B, 1993, 397 (1-2) :260-282
[2]   ANTIPERIODIC BOUNDARY-VALUE-PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL-EQUATIONS IN HILBERT-SPACES [J].
AFTABIZADEH, AR ;
AIZICOVICI, S ;
PAVEL, NH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (03) :253-267
[3]  
Ahmad B, 2010, TOPOL METHOD NONL AN, V35, P295
[4]   Boundary flows in general coset theories [J].
Ahn, C ;
Rim, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (13) :2509-2525
[5]   Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities [J].
Aizicovici, S ;
McKibben, M ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (02) :233-251
[6]   ANTIPERIODIC SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS IN HILBERT-SPACE [J].
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :387-408
[7]  
[Anonymous], 1981, LECT NOTES MATH
[8]  
Chen HL, 1996, J COMPUT MATH, V14, P32
[9]  
Chen Y. Q., 1999, ADV MATH SCI APPL, V9, P125
[10]   Anti-periodic solutions for evolution equations with mappings in the class (S+) [J].
Chen, YQ ;
Cho, YJ ;
O'Regan, D .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (04) :356-362