Radiography image analysis using cat swarm optimized deep belief networks

被引:4
作者
Elameer, Amer S. [3 ]
Jaber, Mustafa Musa [1 ,2 ]
Abd, Sura Khalil [1 ]
机构
[1] Dijlah Univ Collage, Dept Comp Sci, Baghdad 00964, Iraq
[2] Al Turath Univ Coll, Dept Comp Sci, Baghdad, Iraq
[3] Univ Informat Technol & Commun UOITC, Biomed Informat Coll, Baghdad, Iraq
关键词
radiography images; statistical Kolmogorov-Simonov test; cat swarm-optimized deep belief networks; AdaDelta learning process; SEGMENTATION;
D O I
10.1515/jisys-2021-0172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radiography images are widely utilized in the health sector to recognize the patient health condition. The noise and irrelevant region information minimize the entire disease detection accuracy and computation complexity. Therefore, in this study, statistical Kolmogorov-Smirnov test has been inte-grated with wavelet transform to overcome the de-noising issues. Then the cat swarm-optimized deep belief network is applied to extract the features from the affected region. The optimized deep learning model reduces the feature training cost and time and improves the overall disease detection accuracy. The network learning process is enhanced according to the AdaDelta learning process, which replaces the learning parameter with a delta value. This process minimizes the error rate while recognizing the disease. The efficiency of the system evaluated using image retrieval in medical application dataset. This process helps to determine the various diseases such as breast, lung, and pediatric studies.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 38 条
[1]  
Abid MMN, 2021, NEUROCOMPUTING
[2]   Deep Recurrent Neural Networks for Prostate Cancer Detection: Analysis of Temporal Enhanced Ultrasound [J].
Azizi, Shekoofeh ;
Bayat, Sharareh ;
Yan, Pingkun ;
Tahmasebi, Amir ;
Kwak, Jin Tae ;
Xu, Sheng ;
Turkbey, Baris ;
Choyke, Peter ;
Pinto, Peter ;
Wood, Bradford ;
Mousavi, Parvin ;
Abolmaesumi, Purang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (12) :2695-2703
[3]   Denoising of MR images using Kolmogorov-Smirnov distance in a Non Local framework [J].
Baselice, Fabio ;
Ferraioli, Giampaolo ;
Pascazio, Vito ;
Sorriso, Antonietta .
MAGNETIC RESONANCE IMAGING, 2019, 57 :176-193
[4]   DCAN: Deep contour-aware networks for object instance segmentation from histology images [J].
Chen, Hao ;
Qi, Xiaojuan ;
Yu, Lequan ;
Dou, Qi ;
Qin, Jing ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2017, 36 :135-146
[5]   Automated Measurement of Lumbar Lordosis on Radiographs Using Machine Learning and Computer Vision [J].
Cho, Brian H. ;
Kaji, Deepak ;
Cheung, Zoe B. ;
Ye, Ivan B. ;
Tang, Ray ;
Ahn, Amy ;
Carrillo, Oscar ;
Schwartz, John T. ;
Valliani, Aly A. ;
Oermann, Eric K. ;
Arvind, Varun ;
Ranti, Daniel ;
Sun, Li ;
Kim, Jun S. ;
Cho, Samuel K. .
GLOBAL SPINE JOURNAL, 2020, 10 (05) :611-618
[6]   Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis [J].
Dallora, Ana Luiza ;
Anderberg, Peter ;
Kvist, Ola ;
Mendes, Emilia ;
Ruiz, Sandra Diaz ;
Berglund, Johan Sanmartin .
PLOS ONE, 2019, 14 (07)
[7]   Quality classification of Jatropha curcas seeds using radiographic images and machine learning [J].
de Medeiros, Andre Dantas ;
Pinheiro, Daniel Teixeira ;
Xavier, Wanderson Andrade ;
da Silva, Laercio Junio ;
Fernandes dos Santos Dias, Denise Cunha .
INDUSTRIAL CROPS AND PRODUCTS, 2020, 146
[8]   Survey of deep learning in breast cancer image analysis [J].
Debelee, Taye Girma ;
Schwenker, Friedhelm ;
Ibenthal, Achim ;
Yohannes, Dereje .
EVOLVING SYSTEMS, 2020, 11 (01) :143-163
[9]   Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks [J].
Eppenhof, Koen A. J. ;
Pluim, Josien P. W. .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (02)
[10]   Classification of Bacterial and Viral Childhood Pneumonia Using Deep Learning in Chest Radiography [J].
Gu, Xianghong ;
Pan, Liyan ;
Liang, Huiying ;
Yang, Ran .
PROCEEDINGS OF 2018 THE 3RD INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2018), 2018, :88-93