Finite Distributive Semilattices

被引:1
|
作者
Gonzalez, Luciano J. [1 ]
机构
[1] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Santa Rosa, Argentina
关键词
Semilattice; Distributivity; Representation; Lattice;
D O I
10.1007/s10485-021-09669-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present article aims to develop a categorical duality for the category of finite distributive join-semilattices and boolean AND-homomorphisms (maps that preserve the joins and the meets, when they exist). This dual equivalence is a generalization of the famous categorical duality given by Birkhoff for finite distributive lattices. Moreover, we show that every finite distributive semilattice is a Hilbert algebra with supremum. We obtain some applications from the dual equivalence. We provide a dual description of the 1-1 and onto boolean AND-homomorphisms, and we obtain a dual characterization of some subalgebras. Finally, we present a representation for the class of finite semi-boolean algebras.
引用
收藏
页码:641 / 658
页数:18
相关论文
共 50 条
  • [21] Injective Hulls in the Category of Mildly Distributive Semilattices
    Xia, Changchun
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2022, 39 (03): : 381 - 388
  • [22] Some Characterizations of 0-Distributive Semilattices
    Chakraborty, H. S.
    Talukder, M. R.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (04) : 1103 - 1110
  • [23] Injective Hulls in the Category of Mildly Distributive Semilattices
    Changchun Xia
    Order, 2022, 39 : 381 - 388
  • [24] THE WORD PROBLEM IN THE TENSOR PRODUCT OF DISTRIBUTIVE SEMILATTICES
    FRASER, GA
    BELL, AM
    SEMIGROUP FORUM, 1984, 30 (01) : 117 - 120
  • [25] α-filters and α-order-ideals in distributive quasicomplemented semilattices
    Calomino, Ismael
    Celani, Sergio
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2021, 62 (01): : 15 - 32
  • [26] ALPHA-IDEALS IN O-DISTRIBUTIVE SEMILATTICES AND O-DISTRIBUTIVE LATTICES
    PAWAR, YS
    MANE, DN
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1993, 24 (7-8): : 435 - 443
  • [27] Priestley Style Duality for Distributive Meet-semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    STUDIA LOGICA, 2011, 98 (1-2) : 83 - 122
  • [28] Priestley Style Duality for Distributive Meet-semilattices
    Guram Bezhanishvili
    Ramon Jansana
    Studia Logica, 2011, 98 : 83 - 122
  • [29] A TOPOLOGICAL DUALITY FOR MILDLY DISTRIBUTIVE MEET-SEMILATTICES
    Celani, Sergio A.
    Gonzalez, Luciano J.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2018, 59 (02): : 265 - 284
  • [30] SOME PROPERTIES OF 1-DISTRIBUTIVE JOIN SEMILATTICES
    Akhter, Shiuly
    Noor, A. S. A.
    Ali, M. Ayub
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2015, 9 (02): : 1377 - 1384