PHASE COMPOSITION STABILITY OF NANOSTRUCTURED COMPOSITE CERAMICS BASED ON CaO-ZrO2 UNDER HYDROTHERMAL IMPACT

被引:9
作者
Dmitrievskiy, A. A. [1 ]
Zhigacheva, D. G. [1 ]
Efremova, N. Yu. [1 ]
Umrikhin, A. V. [1 ]
机构
[1] Derzhavin Tambov State Univ, Tambov 392000, Russia
来源
NANOTECHNOLOGIES IN RUSSIA | 2019年 / 14卷 / 3-4期
基金
俄罗斯基础研究基金会;
关键词
MECHANICAL-PROPERTIES; ZIRCONIA CERAMICS; ALUMINA; MICROSTRUCTURE; TOUGHNESS;
D O I
10.1134/S1995078019020058
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Structure, phase composition, and mechanical properties (microhardness within indenter penetration depths of 1200 nm <= h <= 6000 nm and fracture toughness) are studied on nanostructured zirconia ceramics (CaO stabilized) hardened with corundum and SiO2 during accelerated aging under hydrothermal conditions (T-ag = 134 degrees C, P = 3 atm, H = 100%, 0 <= t(ag) <= 25 h). The use of CaO as a stabilizer of the zirconia tetragonal phase (instead of "conventional" Y2O3) promotes increasing resistance to hydrothermal effects of composite ZrO2 + Al2O3 and ZrO2 + Al2O3 + SiO2 ceramics. The reached fracture toughness (more than in 40%) via introduction of silica ( = 5 mol %) increase provides a satisfactory hardness/fracture toughness (H = 12.3 GPa, K-C = 6.66 MPa m(1/2)) ratio of the Ca-ZrO2 + Al2O3 + SiO2 composite ceramics even after its accelerated 25-h aging.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 26 条
[1]   Effect of ZrO2 content on ageing resistance and osteogenic cell differentiation of ZrO2-Al2O3 composite [J].
Albano, Maria P. ;
Calambas Pulgarin, Heidy L. ;
Garrido, Liliana B. ;
Ferraz, Emanuela Prado ;
Rosa, Adalberto L. ;
de Oliveira, Paulo Tambasco .
CERAMICS INTERNATIONAL, 2016, 42 (09) :11363-11372
[2]   Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis [J].
Chevalier, J ;
Deville, S ;
Münch, E ;
Jullian, R ;
Lair, F .
BIOMATERIALS, 2004, 25 (24) :5539-5545
[3]   Structure and Mechanical Properties of the CaO-ZrO2-Al2O3 Ceramic Composites at Low Corundum Concentrations [J].
Dmitrievskii, A. A. ;
Zhigachev, A. O. ;
Zhigacheva, D. G. ;
Tyurin, A., I .
TECHNICAL PHYSICS, 2019, 64 (01) :86-91
[4]  
Dmitrievskii A. A., 2018, TECH PHYS LETT, V4, P141, DOI [10.21883/PJTF.2018.04.45635.16933, DOI 10.21883/PJTF.2018.04.45635.16933]
[5]  
Dmitrievskii A. A., 2019, P INT S PERSP MAT TE
[6]   PERSPECTIVE ON THE DEVELOPMENT OF HIGH-TOUGHNESS CERAMICS [J].
EVANS, AG .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (02) :187-206
[7]   Quantification of hydrothermal degradation in zirconia by nanoindentation [J].
Gaillard, Y. ;
Jimenez-Pique, E. ;
Soldera, F. ;
Muecklich, F. ;
Anglada, M. .
ACTA MATERIALIA, 2008, 56 (16) :4206-4216
[8]   CERAMIC STEEL [J].
GARVIE, RC ;
HANNINK, RH ;
PASCOE, RT .
NATURE, 1975, 258 (5537) :703-704
[9]   Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications [J].
Ghaemi, M. H. ;
Reichert, S. ;
Krupa, A. ;
Sawczak, M. ;
Zykova, A. ;
Lobach, K. ;
Sayenko, S. ;
Syitlychnyi, Y. .
CERAMICS INTERNATIONAL, 2017, 43 (13) :9746-9752
[10]   Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review [J].
Golovin, Yu. I. .
PHYSICS OF THE SOLID STATE, 2008, 50 (12) :2205-2236