The algebraic connectivity of lollipop graphs

被引:10
作者
Guo, Ji-Ming [2 ]
Shiu, Wai Chee [1 ]
Li, Jianxi [1 ,3 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] China Univ Petr, Dept Appl Math, Dongying 257061, Shandong, Peoples R China
[3] Zhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou 363000, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
Algebraic connectivity; Lollipop graph; Characteristic polynomial; FIXED GIRTH; TREES; EIGENVECTORS; SPECTRUM;
D O I
10.1016/j.laa.2010.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C-n,C-g be the lollipop graph obtained by appending a g-cycle C-g to a pendant vertex of a path on n - g vertices. In 2002, Fallat, Kirkland and Pati proved that for n >= 3g-1/2 and g >= 4, alpha (C-n,C-g) > alpha (C-n,C-g-1) In this paper, we prove that for g >= 4, alpha (C-n,C-,C-g) > alpha (C-n,C-g-1) for all n, where alpha(C-n,C-g) is the algebraic connectivity of C-n,C-g. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2204 / 2210
页数:7
相关论文
共 20 条
  • [1] [Anonymous], 1979, SPECTRA GRAPHS THEOR
  • [2] BANAT RB, 1998, LINEAR MULTILINEAR A, V45, P247
  • [3] On algebraic connectivity and spectral integral variations of graphs
    Barik, S
    Pati, S
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 : 209 - 222
  • [4] Fallat S, 1998, ELECTRON J LINEAR AL, V3, P48, DOI DOI 10.13001/1081-3810.10140913.05073
  • [5] Minimizing algebraic connectivity over connected graphs with fixed girth
    Fallat, SM
    Kirkland, S
    Pati, S
    [J]. DISCRETE MATHEMATICS, 2002, 254 (1-3) : 115 - 142
  • [6] FIEDLER M, 1975, CZECH MATH J, V25, P619
  • [7] THE LAPLACIAN SPECTRUM OF A GRAPH
    GRONE, R
    MERRIS, R
    SUNDER, VS
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 218 - 238
  • [8] GRONE R, 1987, CZECH MATH J, V37, P660
  • [9] ORDERING TREES BY ALGEBRAIC CONNECTIVITY
    GRONE, R
    MERRIS, R
    [J]. GRAPHS AND COMBINATORICS, 1990, 6 (03) : 229 - 237
  • [10] A conjecture on the algebraic connectivity of connected graphs with fixed girth
    Guo, Ji-Ming
    [J]. DISCRETE MATHEMATICS, 2008, 308 (23) : 5702 - 5711