ADVANCES IN ROBOT DESIGN AND INTELLIGENT CONTROL
|
2016年
/
371卷
关键词:
Compliant movement primitives;
Task-specific dynamics;
Learning;
Dynamic movement primitives;
MOVEMENT PRIMITIVES;
ROBOTS;
D O I:
10.1007/978-3-319-21290-6_44
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
The paper addresses the problem of learning internal task-specific dynamic models for a reaching task. Using task-specific dynamic models is crucial for achieving both high tracking accuracy and compliant behaviour, which improves safety concerns while working in unstructured environment or with humans. The proposed approach uses programming by demonstration to learn new task-related movements encoded as Compliant Movement Primitives (CMPs). CMPs are a combination of position trajectories encoded in a form of Dynamic Movement Primitives (DMPs) and corresponding task-specific Torque Primitives (TPs) encoded as a linear combination of kernel functions. Unlike the DMPs, TPs cannot be directly acquired from user demonstrations. Inspired by the human sensorimotor learning ability we propose a novel method which autonomously learns task-specific TPs, based on a given kinematic trajectory in DMPs.