On nonlinear quasi-contractions on TVS-cone metric spaces

被引:11
作者
Arandelovic, Ivan D. [1 ]
Keckic, Dragoljub J. [2 ]
机构
[1] Univ Belgrade, Fac Mech Engn, Beograd 11000, Serbia
[2] Univ Belgrade, Fac Mathematics, Beograd 11000, Serbia
关键词
Fixed point; TVS-cone metric space; Quasi-contraction; FIXED-POINT THEOREMS;
D O I
10.1016/j.aml.2011.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Du [W.-S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. (2009), doi:10.1016/j.na.2009.10.026] introduced the notion of TVS-cone metric space. In this paper we present fixed point theorem for nonlinear quasi-contractive mappings defined on TVS-cone metric space, which generalizes earlier results obtained by Ilic and Rakocevic [D. Ilic, V. Rakocevic, Quasi-contractions on a cone metric space, Appl. Math. Lett. 22 (2009) 728-731] and Kadelburg, Radenovic and Rakocevic [Z. Kadelburg, S. Radenovic, V. Rakocevic, Remarks on quasi-contractions on a cone metric space, Appl. Math. Lett. 22 (2009) 1674-1679]. (c) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1209 / 1213
页数:5
相关论文
共 22 条
[1]   Fixed and periodic point results in cone metric spaces [J].
Abbas, Mujahid ;
Rhoades, B. E. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (04) :511-515
[2]  
[Anonymous], 1971, LOCALLY CONVEX TOPOL
[3]  
Arandelovic ID, 2008, FIXED POINT THEOR-RO, V9, P387
[4]   Some Common Fixed Point Results in Cone Metric Spaces [J].
Arshad, Muhammad ;
Azam, Akbar ;
Vetro, Pasquale .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[5]   Common fixed points of two maps in cone metric spaces [J].
Azam A. ;
Arshad M. ;
Beg I. .
Rendiconti del Circolo Matematico di Palermo, 2008, 57 (3) :433-441
[6]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[7]  
Danes Josef., 1976, Bull. Austral.Math. Soc, V14, P259, DOI DOI 10.1017/S0004972700025077
[8]   Weakly φ-pairs and common fixed points in cone metric spaces [J].
Di Bari C. ;
Vetro P. .
Rendiconti del Circolo Matematico di Palermo, 2009, 58 (1) :125-132
[9]   φ-pairs and common fixed points in cone metric spaces [J].
Di Bari C. ;
Vetro P. .
Rendiconti del Circolo Matematico di Palermo, 2008, 57 (2) :279-285
[10]   A note on cone metric fixed point theory and its equivalence [J].
Du, Wei-Shih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2259-2261