Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion

被引:8
作者
Azmoodeh, Ehsan [1 ]
Viitasaari, Lauri [2 ]
机构
[1] Univ Luxembourg, Fac Sci, Technol & Commun, Luxembourg, Luxembourg
[2] Aalto Univ, Sch Sci, Dept Math & Syst Anal, Espoo, Finland
关键词
Fractional Brownian motion; Stochastic integral; Discretization; Rate of convergence;
D O I
10.1007/s10959-013-0495-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, a uniform discretization of stochastic integrals integral(1)(0)integral'-(B-t)dB(t), where denotes the fractional Brownian motion with Hurst parameter , is considered for a large class of convex functions . In Azmoodeh et al. (Stat Decis 27:129-143, 2010), for any convex function , the almost sure convergence of uniform discretization to such stochastic integral is proved. Here, we prove -convergence of uniform discretization to stochastic integral. In addition, we obtain a rate of convergence. It turns out that the rate of convergence can be brought arbitrarily close to H = 1/2.
引用
收藏
页码:396 / 422
页数:27
相关论文
共 12 条
[1]  
[Anonymous], 1995, Mathematics and Its Applications
[2]  
Azmoodeh E., 2010, STAT DECIS, V27, P129
[3]   Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index H > 1/2 [J].
Biagini, Francesca ;
Campanino, Massimo ;
Fuschini, Serena .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2008, 80 (05) :407-426
[4]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[5]   Tanaka formula for the fractional Brownian motion [J].
Coutin, L ;
Nualart, D ;
Tudor, CA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (02) :301-315
[6]  
Friz P. K., 2010, Cambridge Studies in Advanced Mathematics, V120
[7]  
Mishura Y, 2008, STOCHASTIC CALCULUS
[8]  
Nualart D., 2002, Collect. Math., V53, P55
[9]  
Samko SG., 1993, Fractional Integrals and Derivatives: Theory and Applications, DOI DOI 10.1007/S10957-022-02125-9
[10]  
Wasilkowski GW, 2001, MATH COMPUT, V70, P685, DOI 10.1090/S0025-5718-00-01214-X