R3F: RDF triple filtering method for efficient SPARQL query processing

被引:13
|
作者
Kim, Kisung [1 ]
Moon, Bongki [1 ]
Kim, Hyoung-Joo [1 ]
机构
[1] Seoul Natl Univ, Dept Comp Sci & Engn, Seoul, South Korea
来源
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS | 2015年 / 18卷 / 02期
基金
新加坡国家研究基金会;
关键词
RDF; SPARQL; Query optimization; Triple filtering; Intermediate results; KNOWLEDGE-BASE; WEB;
D O I
10.1007/s11280-013-0253-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid growth in the amount of graph-structured Resource Description Framework (RDF) data, SPARQL query processing has received significant attention. The most important part of SPARQL query processing is its method of subgraph pattern matching. For this, most RDF stores use relation-based approaches, which can produce a vast number of redundant intermediate results during query evaluation. In order to address this problem, we propose an RDF Triple Filtering (R3F) method that exploits the graph-structural information of RDF data. We design a path-based index called the RDF Path index (RP-index) to efficiently provide filter data for the triple filtering. We also propose a relational operator called the RDF Filter (RFLT) that can conduct the triple filtering with little overhead compared to the original query processing. Through comprehensive experiments on large-scale RDF datasets, we demonstrate that R3F can effectively and efficiently reduce the number of redundant intermediate results and improve the query performance.
引用
收藏
页码:317 / 357
页数:41
相关论文
共 50 条
  • [1] R3F: RDF triple filtering method for efficient SPARQL query processing
    Kisung Kim
    Bongki Moon
    Hyoung-Joo Kim
    World Wide Web, 2015, 18 : 317 - 357
  • [2] Towards efficient SPARQL query processing on RDF data
    Liu C.
    Wang H.
    Yu Y.
    Xu L.
    Tsinghua Science and Technology, 2010, 15 (06) : 613 - 622
  • [3] Towards Efficient SPARQL Query Processing on RDF Data
    刘畅
    王昊奋
    俞勇
    徐林昊
    TsinghuaScienceandTechnology, 2010, 15 (06) : 613 - 622
  • [4] Research on Efficient SPARQL Query Processing for RDF Data
    Zhang, Yi
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2015), 2015, 33 : 476 - 482
  • [5] RDF partitioning for scalable SPARQL query processing
    Xiaoyan WANG
    Tao YANG
    Jinchuan CHEN
    Long HE
    Xiaoyong DU
    Frontiers of Computer Science, 2015, 9 (06) : 919 - 933
  • [6] RDF partitioning for scalable SPARQL query processing
    Wang, Xiaoyan
    Yang, Tao
    Chen, Jinchuan
    He, Long
    Du, Xiaoyong
    FRONTIERS OF COMPUTER SCIENCE, 2015, 9 (06) : 919 - 933
  • [7] RDF partitioning for scalable SPARQL query processing
    Xiaoyan Wang
    Tao Yang
    Jinchuan Chen
    Long He
    Xiaoyong Du
    Frontiers of Computer Science, 2015, 9 : 919 - 933
  • [8] RG-index: An RDF graph index for efficient SPARQL query processing
    Kim, Kisung
    Moon, Bongki
    Kim, Hyoung-Joo
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (10) : 4596 - 4607
  • [9] RDF Data Storage Techniques for Efficient SPARQL Query Processing using Distributed Computation Engines
    Hassan, Mahmudul
    Bansal, Srividya K.
    2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, : 323 - 330
  • [10] A Decentralized Architecture for SPARQL Query Processing and RDF Sharing: A Position Paper
    Marx, Edgard
    Saleem, Muhammad
    Lytra, Ioanna
    Ngomo, Axel-Cyrille Ngonga
    2018 IEEE 12TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2018, : 274 - 277