PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS

被引:12
作者
Du, Fapeng [1 ,2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211100, Jiangsu, Peoples R China
[2] Xuzhou Inst Technol, Sch Math & Phys Sci, Dept Math, Xuzhou 221008, Jiangsu, Peoples R China
关键词
Banach space; Moore-Penrose metric generalized inverse; Gap between homogeneous subsets; BANACH-SPACES; STABLE PERTURBATION; SELECTIONS;
D O I
10.15352/bjma/09-4-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Utilizing the gap between homogenous subsets which is introduced in this paper, the perturbations for the Moore Penrose metric generalized inverses of bounded linear operators in Banach spaces are discussed. Under range preseving, kernel preseving and general case, respectively, we get some new results about error estimate of the perturbations for the Moore Penrose metric generalized inverse of bounded linear operators.
引用
收藏
页码:100 / 114
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 1984, GRUNDLEHREN MATH WIS
[2]  
Cao J., 2013, ANN U BUCHAR MATH SE, V4, P433
[3]  
Cao J., 2013, J OPERATOR, V2013
[4]   Perturbation analysis for the operator equation Tx=b in Banach spaces [J].
Chen, GL ;
Xue, YF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) :107-125
[5]   Perturbation analysis of the least squares solution in Hilbert spaces [J].
Chen, GL ;
Wei, MS ;
Xue, YF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 :69-80
[6]   LINEAR SELECTIONS FOR THE METRIC PROJECTION [J].
DEUTSCH, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (03) :269-292
[7]   The characterizations of the stable perturbation of a closed operator by a linear operator in Banach spaces [J].
Du, Fapeng ;
Xue, Yifeng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2046-2053
[8]   Criteria for the metric generalized inverse and its selections in banach spaces [J].
Hudzik, Henryk ;
Wang, Yuwen ;
Zheng, Wenjing .
SET-VALUED ANALYSIS, 2008, 16 (01) :51-65
[9]  
Li JL., 2004, FIXED POINT THEORY, V5, P285
[10]   Perturbations of Moore-Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces [J].
Ma, Hai Feng ;
Sun, Shuang ;
Wang, Yu Wen ;
Zheng, Wen Jing .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (07) :1109-1124