What Goes Around: Leveraging a Constant-Curvature Motion Constraint in Radar Odometry

被引:16
作者
Aldera, Roberto [1 ]
Gadd, Matthew [1 ]
De Martini, Daniele [1 ]
Newman, Paul [1 ]
机构
[1] Univ Oxford, Mobile Robot Grp MRG, Oxford OX2 6NN, England
基金
英国工程与自然科学研究理事会;
关键词
Ego-motion estimation; field robotics; motion constraints; radar; radar odometry; sensing; VISUAL ODOMETRY;
D O I
10.1109/LRA.2022.3186757
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter presents a method that leverages vehicle motion constraints to refine data associations in a point-based radar odometry system. By using the strong prior on how a non-holonomic robot is constrained to move smoothly through its environment, we develop the necessary framework to estimate ego-motion from a single landmark association rather than considering all of these correspondences at once. This allows for informed outlier detection of poor matches that are a dominant source of pose estimate error. By refining the subset of matched landmarks, we see an absolute decrease of 2.15% (from 4.68% to 2.53%) in translational error, approximately halving the error in odometry (reducing by 45.94%) than when using the full set of correspondences. This contribution is relevant to other point-based odometry implementations that rely on a range sensor and provides a lightweight and interpretable means of incorporating vehicle dynamics for ego-motion estimation.
引用
收藏
页码:7865 / 7872
页数:8
相关论文
共 22 条
[1]  
Adams E. J. M., 2012, ROBOT NAVIGATION MAP
[2]   CFEAR Radarodometry - Conservative Filtering for Efficient and Accurate Radar Odometry [J].
Adolfsson, Daniel ;
Magnusson, Martin ;
Alhashimi, Anas ;
Lilienthal, Achim J. ;
Andreasson, Henrik .
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, :5462-5469
[3]  
Aldera R, 2019, IEEE INT C INTELL TR, P2835, DOI 10.1109/ITSC.2019.8917111
[4]  
Aldera R, 2019, IEEE INT CONF ROBOT, P1190, DOI [10.1109/icra.2019.8794014, 10.1109/ICRA.2019.8794014]
[5]   Real time egomotion of a nonholonomic vehicle using LIDAR measurements [J].
Almeida, J. ;
Santos, V. M. .
JOURNAL OF FIELD ROBOTICS, 2013, 30 (01) :129-141
[6]  
Barnes D., 2020, PMLR, P303
[7]  
Barnes D, 2020, IEEE INT CONF ROBOT, P6433, DOI [10.1109/ICRA40945.2020.9196884, 10.1109/icra40945.2020.9196884]
[8]  
Barnes D, 2020, IEEE INT CONF ROBOT, P9484, DOI [10.1109/icra40945.2020.9196835, 10.1109/ICRA40945.2020.9196835]
[9]  
Burnett K, 2021, ROBOT SCI SYS
[10]   Do We Need to Compensate for Motion Distortion and Doppler Effects in Spinning Radar Navigation? [J].
Burnett, Keenan ;
Schoellig, Angela P. ;
Barfoot, Timothy D. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :771-778