Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak

被引:45
作者
Taniguchi, M
Wilson, C
Hunter, CA
Pehowich, DJ
Clanachan, AS
Lopaschuk, GD
机构
[1] Univ Alberta, Cardiovasc Res Grp, Edmonton, AB T6G 2S2, Canada
[2] Univ Alberta, Div Endocrinol & Metab, Edmonton, AB T6G 2S2, Canada
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2001年 / 280卷 / 04期
关键词
ischemia; pyruvate dehydrogenase;
D O I
10.1152/ajpheart.2001.280.4.H1762
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O-2 consumption (nmol O-2. mg(-1). min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H+ production from glucose metabolism to 53% of untreated hearts. Because H+ production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.
引用
收藏
页码:H1762 / H1769
页数:8
相关论文
共 30 条
[1]   DISSOCIATION BETWEEN CONTRACTILE FUNCTION AND OXIDATIVE-METABOLISM IN POSTISCHEMIC MYOCARDIUM - ATTENUATION BY RUTHENIUM RED ADMINISTERED DURING REPERFUSION [J].
BENZI, RH ;
LERCH, R .
CIRCULATION RESEARCH, 1992, 71 (03) :567-576
[2]   Control and kinetic analysis of ischemia-damaged heart mitochondria: Which parts of the oxidative phosphorylation system are affected by ischemia? [J].
Borutaite, V ;
Mildaziene, V ;
Brown, GC ;
Brand, MD .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1995, 1272 (03) :154-158
[3]   Kinetic analysis of changes in activity of heart mitochondrial oxidative phosphorylation system induced by ischemia [J].
Borutaite, V ;
Morkuniene, R ;
Budriunaite, A ;
Krasauskaite, D ;
Ryselis, S ;
Toleikis, A ;
Brown, GC .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1996, 28 (10) :2195-2201
[4]   The uncoupling proteins, a review [J].
Boss, O ;
Muzzin, P ;
Giacobino, JP .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 1998, 139 (01) :1-9
[5]   THE CAUSES AND FUNCTIONS OF MITOCHONDRIAL PROTON LEAK [J].
BRAND, MD ;
CHIEN, LF ;
AINSCOW, EK ;
ROLFE, DFS ;
PORTER, RK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1187 (02) :132-139
[6]   THE PROTON LEAK ACROSS THE MITOCHONDRIAL INNER MEMBRANE [J].
BRAND, MD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1018 (2-3) :128-133
[7]   BENEFICIAL EFFECT OF CARNITINE ON MECHANICAL RECOVERY OF RAT HEARTS REPERFUSED AFTER A TRANSIENT PERIOD OF GLOBAL-ISCHEMIA IS ACCOMPANIED BY A STIMULATION OF GLUCOSE-OXIDATION [J].
BRODERICK, TL ;
QUINNEY, HA ;
BARKER, CC ;
LOPASCHUK, GD .
CIRCULATION, 1993, 87 (03) :972-981
[8]   ENHANCED MYOCARDIAL PRESERVATION BY NICOTINIC-ACID, AN ANTILIPOLYTIC COMPOUND - MECHANISM OF ACTION [J].
DATTA, S ;
DAS, DK ;
ENGELMAN, RM ;
OTANI, H ;
ROUSOU, JA ;
BREYER, RH ;
KLAR, J .
BASIC RESEARCH IN CARDIOLOGY, 1989, 84 (01) :63-76
[9]   PROTONS IN ISCHEMIA - WHERE DO THEY COME FROM - WHERE DO THEY GO TO [J].
DENNIS, SC ;
GEVERS, W ;
OPIE, LH .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1991, 23 (09) :1077-1086
[10]   Metabolic modulation of acute myocardial infarction -: The ECLA glucose-insulin-potassium pilot trial [J].
Díaz, R ;
Paolasso, A ;
Piegas, LS ;
Tajer, CD ;
Moreno, MG ;
Corvalán, R ;
Isea, JE ;
Romero, G .
CIRCULATION, 1998, 98 (21) :2227-2234