Brill-Noether theory for curves on generic abelian surfaces

被引:7
作者
Bayer, Arend [1 ,2 ]
Li, Chunyi [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Edinburgh, Maxwell Inst, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
STABILITY; MODULI; K3;
D O I
10.4310/PAMQ.2017.v13.n1.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We completely describe the Brill-Noether theory for curves in the primitive linear system on generic abelian surfaces, in the following sense: given integers d and r, consider the variety V-d(r)(vertical bar H vertical bar) parametrizing curves C in the primitive linear system vertical bar H vertical bar together with a torsion-free sheaf on C of degree d and r +1 global sections. We give a necessary and sufficient condition for this variety to be non-empty, and show that it is either a disjoint union of Grassmannians, or irreducible. Moreover, we show that, when non-empty, it is of expected dimension. This completes prior results by Knutsen, Lelli-Chiesa and Mongardi.
引用
收藏
页码:49 / 76
页数:28
相关论文
共 22 条
[1]  
[Anonymous], THESIS
[2]  
Arbarello E., 1985, Geometry of algebraic curves, VI
[3]  
Bayer A., 2016, INVENT MATH, P1
[4]  
Bayer A, 2016, ARXIV160408261
[5]   MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations [J].
Bayer, Arend ;
Macri, Emanuele .
INVENTIONES MATHEMATICAE, 2014, 198 (03) :505-590
[6]   Fourier-Mukai transforms for K3 and elliptic fibrations [J].
Bridgeland, T ;
Maciocia, A .
JOURNAL OF ALGEBRAIC GEOMETRY, 2002, 11 (04) :629-657
[7]   Stability conditions on K3 surfaces [J].
Bridgeland, Tom .
DUKE MATHEMATICAL JOURNAL, 2008, 141 (02) :241-291
[8]  
Happel D, 1996, MEM AM MATH SOC, V120, P1
[9]  
Jensen D., 2017, ARXIV170106579
[10]  
Kempf G., 1971, SCHUBERT METHODS APP, P71