Enzyme-Activated Prodrug-Based Smart Liposomes Specifically Enhance Tumor Hemoperfusion with Efficient Drug Delivery to Pancreatic Cancer Cells and Stellate Cells

被引:26
作者
Duan, Nianxiu [1 ,2 ,3 ]
Li, Junjun [2 ,4 ]
Song, Sha [2 ,3 ]
Wang, Feng [5 ]
Yang, Yiwei [2 ]
Nie, Di [2 ]
Wang, Caifen [2 ]
Sheng, Yingjie [2 ]
Tao, Yali [1 ]
Gao, Jie [1 ]
Xu, Can [6 ]
Wei, Yan [1 ,2 ]
Gan, Yong [2 ]
机构
[1] Shanghai Univ, Inst Translat Med, 99 Shangda Rd, Shanghai 200011, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Mat Med, 501 Haike Rd, Shanghai 201203, Peoples R China
[3] Nanchang Univ, Dept Pharm, Med Coll, 461 Bayi Rd, Nanchang 330006, Jiangxi, Peoples R China
[4] Univ Sci & Technol China, Nano Sci & Technol Inst, 166 Renai Rd, Suzhou 215123, Peoples R China
[5] Shanghai Hansoh Biomed R&D Inc, Dept Med Chem, 3728 Jinke Rd, Shanghai 201203, Peoples R China
[6] Changhai Hosp, Dept Gastroenterol, 168 Changhai Rd, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
drug delivery; pancreatic cancer; prodrugs; smart liposomes; tumor-specific vascular promotion; STRATEGIES; THERAPY; GROWTH; ANGIOGENESIS; INHIBITION; INTEGRIN; EFFICACY; OVERCOME; DESIGN;
D O I
10.1002/adfm.202100605
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tumor-specific enhanced delivery of chemotherapeutics and modulators to tumor cells and activated pancreatic stellate cells (aPSCs), respectively, represents safer and more effective therapy for pancreatic cancer. Herein, a membrane type 1-matrix metalloproteinase (MT1-MMP)-cleavable spacer is used to assemble low-density cRGDfK onto thermosensitive liposomes loaded with phosphorylated calcipotriol (PCAL) and doxorubicin (DOX), yielding MR-T-PD. The liposome-linked cRGDfK prodrug on MR-T-PD surface is first activated by MT1-MMP, which is selectively expressed on tumor endothelial cells, to release cRGDfK. The free cRGDfK specifically promotes tumor angiogenesis, leading to 3.4-fold higher accumulation and a wider distribution of MR-T-PD in tumors. Furthermore, MR-T-PD rapidly releases PCAL and DOX into the interstitium under heat treatment. The released DOX enters tumor cells to induce apoptosis, whereas the PCAL prodrug is converted to CAL by alkaline phosphatase on the surface of aPSCs; CAL can then enter aPSCs to induce quiescence and promote the antitumor effect of DOX. Finally, by enhancing the exposure of DOX and CAL to tumor cells and aPSCs, respectively, in a tumor-specific manner, MR-T-PD exerts superior efficacy (a 5.9-fold decrease in tumor weight) without causing additional side effects. Overall, this prodrug-based smart liposome system represents a promising paradigm for pancreatic cancer therapy.
引用
收藏
页数:14
相关论文
共 38 条
[1]   Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer [J].
Adiseshaiah, Pavan P. ;
Crist, Rachael M. ;
Hook, Sara S. ;
McNeil, Scott E. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2016, 13 (12) :750-765
[2]   Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics [J].
Al-Ahmady, Zahraa ;
Kostarelos, Kostas .
CHEMICAL REVIEWS, 2016, 116 (06) :3883-3918
[3]   Development of Novel Tumor-Targeted Theranostic Nanoparticles Activated by Membrane-Type Matrix Metalloproteinases for Combined Cancer Magnetic Resonance Imaging and Therapy [J].
Ansari, Celina ;
Tikhomirov, Grigory A. ;
Hong, Su Hyun ;
Falconer, Robert A. ;
Loadman, Paul M. ;
Gill, Jason H. ;
Castaneda, Rosalinda ;
Hazard, Florette K. ;
Tong, Ling ;
Lenkov, Olga D. ;
Felsher, Dean W. ;
Rao, Jianghong ;
Daldrup-Link, Heike E. .
SMALL, 2014, 10 (03) :566-575
[4]   A Starring Role for Stellate Cells in the Pancreatic Cancer Microenvironment [J].
Apte, Minoti V. ;
Wilson, Jeremy S. ;
Lugea, Aurelia ;
Pandol, Stephen J. .
GASTROENTEROLOGY, 2013, 144 (06) :1210-1219
[5]  
Cabral H, 2011, NAT NANOTECHNOL, V6, P815, DOI [10.1038/nnano.2011.166, 10.1038/NNANO.2011.166]
[6]   MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix [J].
Chun, TH ;
Sabeh, F ;
Ota, I ;
Murphy, H ;
McDonagh, KT ;
Holmbeck, K ;
Birkedal-Hansen, H ;
Allen, ED ;
Weiss, SJ .
JOURNAL OF CELL BIOLOGY, 2004, 167 (04) :757-767
[7]   Differential antiproliferative effects of calcitriol on tumor-derived and matrigel-derived endothelial cells [J].
Chung, Ivy ;
Wong, Nfichael K. ;
Flynn, Geraldine ;
Yu, Wei-dong ;
Johnson, Candace S. ;
Trump, Donald L. .
CANCER RESEARCH, 2006, 66 (17) :8565-8573
[8]   Endothelial Cell Tube Formation Assay for the In Vitro Study of Angiogenesis [J].
DeCicco-Skinner, Katie L. ;
Henry, Gervaise H. ;
Cataisson, Christophe ;
Tabib, Tracy ;
Gwilliam, J. Curtis ;
Watson, Nicholas J. ;
Bullwinkle, Erica M. ;
Falkenburg, Lauren ;
O'Neill, Rebecca C. ;
Morin, Adam ;
Wiest, Jonathan S. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (91)
[9]   αvβ3 Integrin and tumour blood vessels - learning from the past to shape the future [J].
Demircioglu, Fevzi ;
Hodivala-Dilke, Kairbaan .
CURRENT OPINION IN CELL BIOLOGY, 2016, 42 :121-127
[10]   Selective Inhibition of Matrix Metalloproteinase-14 Blocks Tumor Growth, Invasion, and Angiogenesis [J].
Devy, Laetitia ;
Huang, Lili ;
Naa, Laurent ;
Yanamandra, Niranjan ;
Pieters, Henk ;
Frans, Nicolas ;
Chang, Edward ;
Tao, Qingfeng ;
Vanhove, Marc ;
Lejeune, Annabelle ;
van Gool, Reinoud ;
Sexton, Daniel J. ;
Kuang, Guannan ;
Rank, Douglas ;
Hogan, Shannon ;
Pazmany, Csaba ;
Ma, Yu Lu ;
Schoonbroodt, Sonia ;
Nixon, Andrew E. ;
Ladner, Robert C. ;
Hoet, Rene ;
Henderikx, Paula ;
TenHoor, Chris ;
Rabbani, Shafaat A. ;
Valentino, Maria Luisa ;
Wood, Clive R. ;
Dransfield, Daniel T. .
CANCER RESEARCH, 2009, 69 (04) :1517-1526