Exploring an In-Plane Graphene and Hexagonal Boron Nitride Array for Separation of Single Nucleotides

被引:15
作者
He, Zhi [1 ,2 ]
Zhou, Ruhong [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Inst Quantitat Biol, Coll Opt Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Coll Life Sci, Hangzhou 310027, Peoples R China
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
基金
中国国家自然科学基金;
关键词
single-nucleotide separation; nanoarray; graphene; hexagonal boron nitride; heterostructure; molecular dynamics; DNA; HETEROSTRUCTURES;
D O I
10.1021/acsnano.1c02450
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Regular nanofluidic sieving structures are emerging as rapid and compatible on-chip techniques for biomolecular separation. Although the current nanofluidic sieving devices, mostly based on three-dimensional nanostructures, have achieved a separation resolution of similar to 20 nm, it is still far away from single-nucleotide resolution. Using all-atom molecular dynamics simulations, here we demonstrate a two-dimensional (2D) nanofluidic sieve consisting of an in-plane graphene (GRA)/hexagonal boron nitride (h-BN) nanoarray, which enables ultrahigh resolution in the successful separation of four types of single nucleotides. The alternating GRA and h-BN stripes can create size-dependent energy barriers for adsorbed nucleotides, which provide a strong modulation for their mobility, thus causing distinct band separations on the 2D surface. We further show that this 2D sieve is particularly sensitive when the sample dimensions are within the range from a half period to one period of the nanoarray. This 2D sieving structure may shed light on the development of lab-on-a-chip sequencing in the future.
引用
收藏
页码:11704 / 11710
页数:7
相关论文
共 39 条
[1]   A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen [J].
Ahmed, Rizwan ;
Omidian, Zahra ;
Giwa, Adebola ;
Cornwell, Benjamin ;
Majety, Neha ;
Bell, David R. ;
Lee, Sangyun ;
Zhang, Hao ;
Michels, Aaron ;
Desiderio, Stephen ;
Sadegh-Nasseri, Scheherazade ;
Rabb, Hamid ;
Gritsch, Simon ;
Suva, Mario L. ;
Cahan, Patrick ;
Zhou, Ruhong ;
Jie, Chunfa ;
Donner, Thomas ;
Hamad, Abdel Rahim A. .
CELL, 2019, 177 (06) :1583-+
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[4]   Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches [J].
Chen, Lingxiu ;
He, Li ;
Wang, Hui Shan ;
Wang, Haomin ;
Tang, Shujie ;
Cong, Chunxiao ;
Xie, Hong ;
Li, Lei ;
Xia, Hui ;
Li, Tianxin ;
Wu, Tianru ;
Zhang, Daoli ;
Deng, Lianwen ;
Yu, Ting ;
Xie, Xiaoming ;
Jiang, Mianheng .
NATURE COMMUNICATIONS, 2017, 8
[5]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[6]   Self-assembled magnetic matrices for DNA separation chips [J].
Doyle, PS ;
Bibette, J ;
Bancaud, A ;
Viovy, JL .
SCIENCE, 2002, 295 (5563) :2237-2237
[7]  
Feng JD, 2015, NAT NANOTECHNOL, V10, P1070, DOI [10.1038/nnano.2015.219, 10.1038/NNANO.2015.219]
[8]  
Foloppe N, 2000, J COMPUT CHEM, V21, P86, DOI 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO
[9]  
2-G
[10]   A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins [J].
Fu, Jianping ;
Schoch, Reto B. ;
Stevens, Anna L. ;
Tannenbaum, Steven R. ;
Han, Jongyoon .
NATURE NANOTECHNOLOGY, 2007, 2 (02) :121-128