Autonomous Configuration of Network Parameters in Operating Systems using Evolutionary Algorithms

被引:2
|
作者
Gembala, Bartosz [1 ]
Yazidi, Anis [1 ]
Haugerud, Harek [1 ]
Nichele, Stefano [1 ]
机构
[1] Oslo Metropolitan Univ, Dept Comp Sci, Oslo, Norway
来源
PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018) | 2018年
关键词
Machine learning; Genetic algorithm; network; configuration; parameter optimization; Virtual Machine;
D O I
10.1145/3264746.3264799
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
By default, the Linux network stack is not configured for highspeed large file transfer. The reason behind this is to save memory resources. It is possible to tune the Linux network stack by increasing the network buffers size for high-speed networks that connect server systems in order to handle more network packets. However, there are also several other TCP/IP parameters that can be tuned in an Operating System (OS). In this paper, we leverage Genetic Algorithms (GAs) to devise a system which learns from the history of the network traffic and uses this knowledge to optimize the current performance by adjusting the parameters. This can be done for a standard Linux kernel using sysctl or /proc. For a Virtual Machine (VM), virtually any type of OS can be installed and an image can swiftly be compiled and deployed. By being a sandboxed environment, risky configurations can be tested without the danger of harming the system. Different scenarios for network parameter configurations are thoroughly tested, and an increase of up to 65% throughput speed is achieved compared to the default Linux configuration.
引用
收藏
页码:118 / 125
页数:8
相关论文
共 50 条
  • [1] Minehunting Mission Planning for Autonomous Underwater Systems Using Evolutionary Algorithms
    Abreu, Nuno
    Matos, Anibal
    UNMANNED SYSTEMS, 2014, 2 (04) : 323 - 349
  • [2] Adaptive navigation of autonomous vehicles using evolutionary algorithms
    Mechanical Engineering Department, University of Patras, 26 500 Patras, Greece
    Artif Intell Eng, 2 (159-173):
  • [3] Adaptive navigation of autonomous vehicles using evolutionary algorithms
    Nearchou, AC
    ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1999, 13 (02): : 159 - 173
  • [4] Determination of network configuration considering multiobjective in distribution systems using genetic algorithms
    Hong, YY
    Ho, SY
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) : 1062 - 1069
  • [5] Autonomous library for evolutionary algorithms
    Sprogar, M
    MELECON 2004: PROCEEDINGS OF THE 12TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1-3, 2004, : 591 - 594
  • [6] Autonomous Selection in Evolutionary Algorithms
    Eiben, A. E.
    Schoenauer, Marc
    van Krevelen, D. W. F.
    Hobbelman, M. C.
    ten Hagen, M. A.
    Schip, R. C. van Het
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 1506 - 1506
  • [7] Evolutionary algorithms for optimal operating parameters of vendor managed inventory systems in a two-echelon supply chain
    Sue-Ann, Goh
    Ponnambalam, S. G.
    Jawahar, N.
    ADVANCES IN ENGINEERING SOFTWARE, 2012, 52 : 47 - 54
  • [8] Autonomous Flight of Unmanned Aerial Vehicles Using Evolutionary Algorithms
    Gaudin, Americo
    Madruga, Gabriel
    Rodriguez, Carlos
    Iturriaga, Santiago
    Nesmachnow, Sergio
    Paz, Claudio
    Danoy, Gregoire
    Bouvry, Pascal
    HIGH PERFORMANCE COMPUTING, CARLA 2019, 2020, 1087 : 337 - 352
  • [9] Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms
    Elsayed, Saber
    Sarker, Ruhul
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 523 - 534
  • [10] Tuning Parameters of Evolutionary Algorithms Using ROC Analysis
    Costa, Lino
    Braga, Ana Cristina
    Oliveira, Pedro
    2ND INTERNATIONAL WORKSHOP ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS (IWPACBB 2008), 2009, 49 : 217 - 222