On accurate product integration rules for linear fractional differential equations

被引:55
作者
Garrappa, Roberto [1 ]
Popolizio, Marina [1 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
Fractional differential equation; Linear problem; Product integration; Mittag-Leffler function; Accuracy Contour integral; MITTAG-LEFFLER FUNCTION; RATIONAL-APPROXIMATIONS; NUMERICAL-SOLUTION; 2ND KIND; VOLTERRA; ERROR; QUADRATURE; ORDER;
D O I
10.1016/j.cam.2010.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the numerical solution of linear fractional differential equations with a forcing term. Competitive and highly accurate Product Integration rules are derived by starting from an equivalent formulation in terms of a Volterra integral equation with a generalized Mittag-Leffler function in the kernel. The error analysis is reported and aspects related to the computational complexity are treated. Numerical tests confirming the theoretical findings are presented. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1085 / 1097
页数:13
相关论文
共 34 条
[1]  
[Anonymous], FRACTALS FRACTIONAL
[2]  
[Anonymous], 2006, Journal of the Electrochemical Society
[3]  
[Anonymous], TP1999209424 NASA
[4]   EXPINT - A MATLAB package for exponential integrators [J].
Berland, Havard ;
Skaflestad, Bard ;
Wright, Will M. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (01)
[5]   PRODUCT INTEGRATION METHODS FOR 2ND-KIND ABEL INTEGRAL-EQUATIONS [J].
CAMERON, RF ;
MCKEE, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (01) :1-10
[6]  
CODY W. J., 1969, J. Approximation Theory, V2, P50
[7]  
DE HOOG F, 1973, MATH COMPUT, V27, P295, DOI 10.1090/S0025-5718-1973-0329207-0
[8]  
Diethelm K, 2004, J COMPUT ANAL APPL, V6, P243
[9]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[10]  
Diethelm K., 1998, Forschung und wissenschaftliches Rechnen, P57