ON FRACTIONAL HARDY INEQUALITIES IN CONVEX SETS

被引:21
作者
Brasco, Lorenzo [1 ,2 ]
Cinti, Eleonora [3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 35, I-44121 Ferrara, Italy
[2] Aix Marseille Univ, CNRS, I2M, Cent Marseille,UMR 7373, 39 Rue Frederic Joliot Curie, F-13453 Marseille, France
[3] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词
Hardy inequality; nonlocal operators; fractional Sobolev spaces; OPERATORS; THEOREM;
D O I
10.3934/dcds.2018175
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Hardy inequality on convex sets, for fractional Sobolev-Slobodeckii spaces of order (s,p). The proof is based on the fact that in a convex set the distance from the boundary is a superharmonic function, in a suitable sense. The result holds for every 1 < p < infinity and 0 < s < 1, with a constant which is stable as s goes to 1.
引用
收藏
页码:4019 / 4040
页数:22
相关论文
共 21 条
[1]   The best constant in a fractional Hardy inequality [J].
Bogdan, Krzysztof ;
Dyda, Bartlomiej .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) :629-638
[2]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[3]   STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN [J].
Brasco, Lorenzo ;
Parini, Enea ;
Squassina, Marco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) :1813-1845
[4]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799
[5]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
[6]   Hardy inequality for censored stable processes [J].
Chen, ZQ ;
Song, RM .
TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (03) :439-450
[7]   Geometric inequalities for fractional Laplace operators and applications [J].
Cinti, Eleonora ;
Ferrari, Fausto .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06) :1699-1714
[8]  
Davies E. B., 1999, OPER THEORY ADV APPL, V110, P55
[9]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299
[10]   A fractional order Hardy inequality [J].
Dyda, B .
ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (02) :575-588