Decomposition systems for function spaces

被引:42
作者
Kyriazis, G [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
unconditional bases; wavelets; frames; Besov spaces; Triebel-Lizorkin spaces;
D O I
10.4064/sm157-2-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let circle minus := {theta(I)(e) : e is an element of E, I is an element of D} be a decomposition system for L-2(R-d) indexed over D, the set of dyadic cubes in R-d, and a finite set E, and let circle minus := {theta(I)(e) : e is an element of E, I is an element of D} be the corresponding dual functionals. That is, for every f is an element of L-2(R-d), f = Sigma(eis an element ofE) Sigma(Iis an element ofD) <f, theta(I)(e)>theta(I)(e). We study sufficient conditions on circle minus, circle minus so that they constitute a decomposition system for Triebel-Lizorkin and Besov spaces. Moreover, these conditions allow us to characterize the membership of a distribution f in these spaces by the size of the coefficients <f, theta(I)(e)>, e is an element of E, I is an element of D. Typical examples of such decomposition systems are various wavelet-type unconditional bases for L-2(R-d), and more general systems such as affine frames.
引用
收藏
页码:133 / 169
页数:37
相关论文
共 50 条
  • [31] Molecular decomposition and Fourier multipliers for holomorphic Besov and Triebel-Lizorkin spaces
    Cleanthous, G.
    Georgiadis, A. G.
    Nielsen, M.
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (03): : 467 - 493
  • [32] Characterization of a class of embeddings for function spaces with Muckenhoupt weights
    Meyries, Martin
    Veraar, Mark
    ARCHIV DER MATHEMATIK, 2014, 103 (05) : 435 - 449
  • [33] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    Drihem, Douadi
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 1073 - 1086
  • [34] Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness
    Haroske, D. D.
    Leopold, H. -G.
    Moura, S. D.
    Skrzypczak, L.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 1007 - 1039
  • [35] Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces
    Douadi Drihem
    Science China Mathematics, 2013, 56 : 1073 - 1086
  • [36] New bases for Triebel-Lizorkin and Besov spaces
    Kyriazis, G
    Petrushev, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) : 749 - 776
  • [37] Traces of weighted function spaces: Dyadic norms and Whitney extensions
    Koskela, Pekka
    Soto, Tomas
    Wang, Zhuang
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 1981 - 2010
  • [38] Regular orthogonal basis on Heisenberg group and application to function spaces
    Yang, Qixiang
    Li, Pengtao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (15) : 3163 - 3182
  • [39] Traces of weighted function spaces: Dyadic norms and Whitney extensions
    KOSKELA Pekka
    SOTO Tomas
    WANG Zhuang
    ScienceChina(Mathematics), 2017, 60 (11) : 1981 - 2010
  • [40] An Approach to Wavelet Isomorphisms of Function Spaces Via Atomic Representations
    Haroske, Dorothee D.
    Skandera, Philipp
    Triebel, Hans
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2018, 24 (03) : 830 - 871