Higher-Order Leaky-Mode Bessel-Beam Launcher

被引:61
作者
Fuscaldo, Walter [1 ,2 ]
Valerio, Guido [3 ]
Galli, Alessandro [1 ]
Sauleau, Ronan [2 ]
Grbic, Anthony [4 ,5 ]
Ettorre, Mauro [2 ]
机构
[1] Univ Roma La Sapienza, Dept Informat Engn Elect & Telecommun, I-00184 Rome, Italy
[2] Univ Rennes 1, IETR, UMR CNRS 6164, F-35042 Rennes, France
[3] Univ Paris 06, Sorbonne Univ, L2E, UR2, F-75005 Paris, France
[4] Univ Michigan, Dept Elect Engn & Comp Sci, Radiat Lab, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Ctr Photon & Multiscale Mat C PHOM, Ann Arbor, MI 48109 USA
关键词
Bessel beams; near-field focusing; artificial surface; leaky waves; high-order modes; millimeter waves; SURFACE-WAVES; GENERATION; SCALAR; RANGES; AXICON;
D O I
10.1109/TAP.2015.2513076
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a Bessel-beam launcher based on a leaky radial waveguide consisting of a capacitive sheet over a ground plane that supports higher-order leaky modes. A propagating Bessel beam is generated above the radiating waveguide. The Bessel beam is transverse-magnetic (TM) polarized with a vertical component of electric field that is a zeroth-order Bessel function of the first kind. A higher-order leaky-wave mode is used to reduce losses at millimeter waves and, at the same time, avoid the thin dielectric layers used in previously proposed lower order leaky-wave Bessel launchers. Closed-form design equations are provided for the proposed structure. In addition, the operating bandwidth of the launcher is defined using dispersion analysis. Near-field measurements of a prototype operating in the frequency range 38-39.5 GHz validate the concept. The measured launcher generates a Bessel beam with a stable spot size of about 4.3 mm (0.57 lambda) over a nondiffractive range of about 16.4 mm (2.2 lambda), within about a 4% fractional bandwidth.
引用
收藏
页码:904 / 913
页数:10
相关论文
共 30 条
[1]   Generation of non-diffractive Bessel beams by inward cylindrical traveling wave aperture distributions [J].
Albani, M. ;
Pavone, S. C. ;
Casaletti, M. ;
Ettorre, M. .
OPTICS EXPRESS, 2014, 22 (15) :18354-18364
[2]  
Ansys Corporation, 1984, ANS HFSS VERS 16 0
[3]   Generation of high-order Bessel beams by use of an axicon [J].
Arlt, J ;
Dholakia, K .
OPTICS COMMUNICATIONS, 2000, 177 (1-6) :297-301
[4]   NON-DIFFRACTIVE VECTOR BESSEL BEAMS [J].
BOUCHAL, Z ;
OLIVIK, M .
JOURNAL OF MODERN OPTICS, 1995, 42 (08) :1555-1566
[5]  
COMSOL Inc, 1998, COMSOL MULT VERS 4 2
[6]   PROPERTIES OF NRD-GUIDE AND H-GUIDE HIGHER-ORDER MODES - PHYSICAL AND NONPHYSICAL RANGES [J].
DINALLO, C ;
FREZZA, F ;
GALLI, A ;
LAMPARIELLO, P ;
OLINER, AA .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1994, 42 (12) :2429-2434
[7]   EXACT-SOLUTIONS FOR NONDIFFRACTING BEAMS .1. THE SCALAR THEORY [J].
DURNIN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04) :651-654
[8]   Generation of Propagating Bessel Beams Using Leaky-Wave Modes [J].
Ettorre, Mauro ;
Grbic, Anthony .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (08) :3605-3613
[9]   Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation [J].
Ettorre, Mauro ;
Rudolph, Scott Michael ;
Grbic, Anthony .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (06) :2645-2653
[10]   Scalar and Tensor Holographic Artificial Impedance Surfaces [J].
Fong, Bryan H. ;
Colburn, Joseph S. ;
Ottusch, John J. ;
Visher, John L. ;
Sievenpiper, Daniel F. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (10) :3212-3221