Higher-Order Leaky-Mode Bessel-Beam Launcher

被引:57
作者
Fuscaldo, Walter [1 ,2 ]
Valerio, Guido [3 ]
Galli, Alessandro [1 ]
Sauleau, Ronan [2 ]
Grbic, Anthony [4 ,5 ]
Ettorre, Mauro [2 ]
机构
[1] Univ Roma La Sapienza, Dept Informat Engn Elect & Telecommun, I-00184 Rome, Italy
[2] Univ Rennes 1, IETR, UMR CNRS 6164, F-35042 Rennes, France
[3] Univ Paris 06, Sorbonne Univ, L2E, UR2, F-75005 Paris, France
[4] Univ Michigan, Dept Elect Engn & Comp Sci, Radiat Lab, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Ctr Photon & Multiscale Mat C PHOM, Ann Arbor, MI 48109 USA
关键词
Bessel beams; near-field focusing; artificial surface; leaky waves; high-order modes; millimeter waves; SURFACE-WAVES; GENERATION; SCALAR; RANGES; AXICON;
D O I
10.1109/TAP.2015.2513076
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a Bessel-beam launcher based on a leaky radial waveguide consisting of a capacitive sheet over a ground plane that supports higher-order leaky modes. A propagating Bessel beam is generated above the radiating waveguide. The Bessel beam is transverse-magnetic (TM) polarized with a vertical component of electric field that is a zeroth-order Bessel function of the first kind. A higher-order leaky-wave mode is used to reduce losses at millimeter waves and, at the same time, avoid the thin dielectric layers used in previously proposed lower order leaky-wave Bessel launchers. Closed-form design equations are provided for the proposed structure. In addition, the operating bandwidth of the launcher is defined using dispersion analysis. Near-field measurements of a prototype operating in the frequency range 38-39.5 GHz validate the concept. The measured launcher generates a Bessel beam with a stable spot size of about 4.3 mm (0.57 lambda) over a nondiffractive range of about 16.4 mm (2.2 lambda), within about a 4% fractional bandwidth.
引用
收藏
页码:904 / 913
页数:10
相关论文
共 30 条
  • [1] Generation of non-diffractive Bessel beams by inward cylindrical traveling wave aperture distributions
    Albani, M.
    Pavone, S. C.
    Casaletti, M.
    Ettorre, M.
    [J]. OPTICS EXPRESS, 2014, 22 (15): : 18354 - 18364
  • [2] Ansys Corporation, 1984, ANS HFSS VERS 16 0
  • [3] Generation of high-order Bessel beams by use of an axicon
    Arlt, J
    Dholakia, K
    [J]. OPTICS COMMUNICATIONS, 2000, 177 (1-6) : 297 - 301
  • [4] NON-DIFFRACTIVE VECTOR BESSEL BEAMS
    BOUCHAL, Z
    OLIVIK, M
    [J]. JOURNAL OF MODERN OPTICS, 1995, 42 (08) : 1555 - 1566
  • [5] COMSOL Inc, 1998, COMSOL MULT VERS 4 2
  • [6] PROPERTIES OF NRD-GUIDE AND H-GUIDE HIGHER-ORDER MODES - PHYSICAL AND NONPHYSICAL RANGES
    DINALLO, C
    FREZZA, F
    GALLI, A
    LAMPARIELLO, P
    OLINER, AA
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1994, 42 (12) : 2429 - 2434
  • [7] EXACT-SOLUTIONS FOR NONDIFFRACTING BEAMS .1. THE SCALAR THEORY
    DURNIN, J
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04): : 651 - 654
  • [8] Generation of Propagating Bessel Beams Using Leaky-Wave Modes
    Ettorre, Mauro
    Grbic, Anthony
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (08) : 3605 - 3613
  • [9] Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation
    Ettorre, Mauro
    Rudolph, Scott Michael
    Grbic, Anthony
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (06) : 2645 - 2653
  • [10] Scalar and Tensor Holographic Artificial Impedance Surfaces
    Fong, Bryan H.
    Colburn, Joseph S.
    Ottusch, John J.
    Visher, John L.
    Sievenpiper, Daniel F.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (10) : 3212 - 3221