Nonlinear system modeling using a self-organizing recurrent radial basis function neural network

被引:26
作者
Han, Hong-Gui [1 ,2 ,3 ]
Guo, Ya-Nan [1 ,2 ,3 ]
Qiao, Jun-Fei [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Information-oriented algorithm; Recurrent radial basis function neural network; Nonlinear system modeling; Improved Levenberg-Marquardt algorithm; COMPONENT ANALYSIS; IDENTIFICATION; PREDICTION; OPTIMIZATION;
D O I
10.1016/j.asoc.2017.10.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an efficient self-organizing recurrent radial basis function neural network (RRBFNN), is developed for nonlinear system modeling. In RRBFNN, a two-steps learning approach is introduced during the learning process. In the first step, the objective is to find the optimal set of parameters using an improved Levenberg-Marquardt (LM) algorithm. In the second step, an efficient information-oriented algorithm (IOA), without any thresholds, is developed to optimize the structure of RRBFNN. The hidden neurons in this IOA-based RRBFNN (IOA-RRBFNN) are generated or pruned automatically to reduce the computational complexity and improve the generalization power. Meanwhile, a theoretical analysis on the learning convergence of IOA-RRBFNN is given in details. To demonstrate the merits of IOA-RRBFNN for modeling nonlinear systems, several benchmark problems and a real world application are present with comparisons against other existing methods. Some promising results are reported in this study, indicating that the proposed IOA-RRBFNN performs prediction accuracy in the case of fast learning speed and compact structure. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1105 / 1116
页数:12
相关论文
共 42 条
[41]  
Yilmaz S., 2010, IEEE T NEURAL NETW, V1
[42]   Low-Complexity Nonlinear Adaptive Filter Based on a Pipelined Bilinear Recurrent Neural Network [J].
Zhao, Haiquan ;
Zeng, Xiangping ;
He, Zhengyou .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (09) :1494-1507