Caputo-Fabrizio fractional differential equations with instantaneous impulses

被引:17
|
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
机构
[1] Univ Saida Dr Moulay Tahar, Dept Math, POB 138, En Nasr 20000, Saida, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela, Spain
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
Fractional differential equation; Caputo-Fabrizio integral of fractional order; Caputo-Fabrizio fractional derivative; instantaneous impulse; measure of noncompactness; fixed point;
D O I
10.3934/math.2021177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
引用
收藏
页码:2932 / 2946
页数:15
相关论文
共 50 条
  • [41] A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative
    Baleanu, Dumitru
    Mohammadi, Hakimeh
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [42] Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method
    Momani, Shaher
    Djeddi, Nadir
    Al-Smadi, Mohammed
    Al-Omari, Shrideh
    APPLIED NUMERICAL MATHEMATICS, 2021, 170 : 418 - 434
  • [43] The novel cubic B-spline method for fractional Painleve′ and Bagley-Trovik equations in the Caputo, Caputo-Fabrizio, and conformable fractional sense
    Shi, Lei
    Tayebi, Soumia
    Abu Arqub, Omar
    Osman, M. S.
    Agarwal, Praveen
    Mahamoud, W.
    Abdel-Aty, Mahmoud
    Alhodaly, Mohammed
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 65 : 413 - 426
  • [44] Numerical Approach of Cattaneo Equation with Time Caputo-Fabrizio Fractional Derivative
    Soori, Zoleikha
    Aminataei, Azim
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (02): : 127 - 153
  • [45] A FRACTIONAL MODEL FOR THE DYNAMICS OF TUBERCULOSIS INFECTION USING CAPUTO-FABRIZIO DERIVATIVE
    Ullah, Saif
    Khan, Muhammad Altaf
    Farooq, Muhammad
    Hammouch, Zakia
    Baleanu, Dumitru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 975 - 993
  • [46] ANALYTICAL AND NUMERICAL STUDY OF A NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Bekkouche, Mohammed Moumen
    Ahmed, Abdelaziz Azeb
    Yazid, Fares
    Djeradi, Fatima Siham
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08): : 2177 - 2193
  • [47] A new numerical fractional differentiation formula to approximate the Caputo-Fabrizio fractional derivative: error analysis and stability
    Herik, Leila Moghadam Dizaj
    JaVidi, Mohammad
    Shafiee, Mahmoud
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (01): : 12 - 27
  • [48] An attractive numerical algorithm for solving nonlinear Caputo-Fabrizio fractional Abel differential equation in a Hilbert space
    Al-Smadi, Mohammed
    Djeddi, Nadir
    Momani, Shaher
    Al-Omari, Shrideh
    Araci, Serkan
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [49] Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral
    M. Moumen Bekkouche
    I. Mansouri
    A. A. Azeb Ahmed
    Journal of Applied Mathematics and Computing, 2022, 68 : 4305 - 4316
  • [50] Computational Simulations for Solving a Class of Fractional Models via Caputo-Fabrizio Fractional Derivative
    Kanth, A. S. V. Ravi
    Garg, Neetu
    6TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS, 2018, 125 : 476 - 482