Caputo-Fabrizio fractional differential equations with instantaneous impulses

被引:17
|
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
机构
[1] Univ Saida Dr Moulay Tahar, Dept Math, POB 138, En Nasr 20000, Saida, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela, Spain
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
Fractional differential equation; Caputo-Fabrizio integral of fractional order; Caputo-Fabrizio fractional derivative; instantaneous impulse; measure of noncompactness; fixed point;
D O I
10.3934/math.2021177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
引用
收藏
页码:2932 / 2946
页数:15
相关论文
共 50 条
  • [31] Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives
    Jianke Zhang
    Xiaojue Ma
    Lifeng Li
    Advances in Difference Equations, 2017
  • [32] Modeling Drug Concentration in Blood through Caputo-Fabrizio and Caputo Fractional Derivatives
    Awadalla, Muath
    Abuasbeh, Kinda
    Noupoue, Yves Yannick Yameni
    Abdo, Mohammed S.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (03): : 2767 - 2785
  • [33] Addressing impulsive fractional integro-differential equations with Caputo-Fabrizio via monotone iterative technique in Banach spaces
    Benyoub, Mohammed
    Abbas, Mohamed I.
    FILOMAT, 2023, 37 (14) : 4761 - 4770
  • [34] Properties of the Caputo-Fabrizio fractional derivative and its distributional settings
    Teodor M. Atanacković
    Stevan Pilipović
    Dušan Zorica
    Fractional Calculus and Applied Analysis, 2018, 21 : 29 - 44
  • [35] A fractional order alcoholism model via Caputo-Fabrizio derivative
    Dokuyucu, Mustafa Ali
    AIMS MATHEMATICS, 2020, 5 (02): : 781 - 797
  • [36] PROPERTIES OF THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE AND ITS DISTRIBUTIONAL SETTINGS
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 29 - 44
  • [37] On the mathematical model of Rabies by using the fractional Caputo-Fabrizio derivative
    Aydogan, Seher Melike
    Baleanu, Dumitru
    Mohammadi, Hakimeh
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] IMPLICIT CAPUTO FRACTIONAL q-DIFFERENCE EQUATIONS WITH NON INSTANTANEOUS IMPULSES
    Abbas, Said
    Benchohra, Mouffak
    Cabada, Alberto
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2023, 15 (03): : 215 - 234
  • [39] A New Result for Fractional Differential Equation With Nonlocal Initial Value Using Caputo-Fabrizio Derivative
    Mokhtary, Z.
    Ghaemi, M. B.
    Salahshour, S.
    FILOMAT, 2022, 36 (09) : 2881 - 2890
  • [40] A numerical study on fractional optimal control problems described by Caputo-Fabrizio fractional integro-differential equation
    Dehestani, Haniye
    Ordokhani, Yadollah
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2023, 44 (04) : 1873 - 1892