Caputo-Fabrizio fractional differential equations with instantaneous impulses

被引:17
|
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
机构
[1] Univ Saida Dr Moulay Tahar, Dept Math, POB 138, En Nasr 20000, Saida, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela, Spain
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
Fractional differential equation; Caputo-Fabrizio integral of fractional order; Caputo-Fabrizio fractional derivative; instantaneous impulse; measure of noncompactness; fixed point;
D O I
10.3934/math.2021177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
引用
收藏
页码:2932 / 2946
页数:15
相关论文
共 50 条
  • [21] A new fractional integral associated with the Caputo-Fabrizio fractional derivative
    Moumen Bekkouche, M.
    Guebbai, H.
    Kurulay, M.
    Benmahmoud, S.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1277 - 1288
  • [22] The Abstract Cauchy Problem with Caputo-Fabrizio Fractional Derivative
    Bravo, Jennifer
    Lizama, Carlos
    MATHEMATICS, 2022, 10 (19)
  • [23] Fundamental results on weighted Caputo-Fabrizio fractional derivative
    Al-Refai, Mohammed
    Jarrah, Abdulla M.
    CHAOS SOLITONS & FRACTALS, 2019, 126 : 7 - 11
  • [24] THE EXISTENCE OF POSITIVE SOLUTIONS AND A LYAPUNOV TYPE INEQUALITY FOR BOUNDARY VALUE PROBLEMS OF THE FRACTIONAL CAPUTO-FABRIZIO DIFFERENTIAL EQUATIONS
    Toprakseven, Suayip
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1125 - 1133
  • [25] A successive midpoint method for nonlinear differential equations with classical and Caputo-Fabrizio derivatives
    Atangana, Abdon
    Araz, Seda Igret
    AIMS MATHEMATICS, 2023, 8 (11): : 27309 - 27327
  • [26] Application of some new contractions for existence and uniqueness of differential equations involving Caputo-Fabrizio derivative
    Afshari, Hojjat
    Hosseinpour, Hossein
    Marasi, H. R.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [27] Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation
    Kebede, Shiferaw Geremew
    Lakoud, Assia Guezane
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [28] Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives
    Zhang, Jianke
    Ma, Xiaojue
    Li, Lifeng
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [29] Application of Measure of Noncompactness On Integral Equations Involving Generalized Proportional Fractional and Caputo-Fabrizio Fractional Integrals
    Das, Anupam
    Hazarika, Bipan
    Parvanah, Vahid
    Mahato, Nihar Kumar
    FILOMAT, 2022, 36 (17) : 5885 - 5893
  • [30] Mathematical Modelling of HIV/AIDS Treatment Using Caputo-Fabrizio Fractional Differential Systems
    Manikandan, S.
    Gunasekar, T.
    Kouidere, A.
    Venkatesan, K. A.
    Shah, Kamal
    Abdeljawad, Thabet
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)