Caputo-Fabrizio fractional differential equations with instantaneous impulses

被引:17
|
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
机构
[1] Univ Saida Dr Moulay Tahar, Dept Math, POB 138, En Nasr 20000, Saida, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela, Spain
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
Fractional differential equation; Caputo-Fabrizio integral of fractional order; Caputo-Fabrizio fractional derivative; instantaneous impulse; measure of noncompactness; fixed point;
D O I
10.3934/math.2021177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
引用
收藏
页码:2932 / 2946
页数:15
相关论文
共 50 条
  • [11] On Fractional Differential Equations with Riesz-Caputo Derivative and Non-Instantaneous Impulses
    Rahou, Wafaa
    Salim, Abdelkrim
    Lazreg, Jamal Eddine
    Benchohra, Mouffak
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 109 - 132
  • [12] A NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS IN THE SENSE OF CAPUTO-FABRIZIO DERIVATIVE
    Herik, Leila Moghadam Dizaj
    Javidi, Mohammad
    Shafiee, Mahmoud
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (01): : 51 - 66
  • [13] Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative
    Sitthiwirattham, Thanin
    Gul, Rozi
    Shah, Kamal
    Mahariq, Ibrahim
    Soontharanon, Jarunee
    Ansari, Khursheed J.
    AIMS MATHEMATICS, 2022, 7 (03): : 4017 - 4037
  • [14] Application of the Caputo-Fabrizio derivative without singular kernel to fractional Schrodinger equations
    Bouzenna, Fatma El-Ghenbazia
    Meftah, Mohammed Tayeb
    Difallah, Mosbah
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [15] On Hyers-Ulam Stability for Fractional Differential Equations Including the New Caputo-Fabrizio Fractional Derivative
    Basci, Yasennn
    Ogrekci, Suleyman
    Misir, Adil
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
  • [16] A novel numerical method for solving the Caputo-Fabrizio fractional differential equation
    Arshad, Sadia
    Saleem, Iram
    Akgul, Ali
    Huang, Jianfei
    Tang, Yifa
    Eldin, Sayed M.
    AIMS MATHEMATICS, 2023, 8 (04): : 9535 - 9556
  • [17] Existence and uniqueness results of nonlinear hybrid Caputo-Fabrizio fractional differential equations with periodic boundary conditions
    Monsif, L.
    El Ghordaf, J.
    Oukessou, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [18] NUMERICAL SOLUTION OF A FRACTIONAL COUPLED SYSTEM WITH THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Mansouri, Ikram
    Bekkouche, Mohammed Moumen
    Ahmed, Abdelaziz Azeb
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2023, 22 (01) : 46 - 56
  • [19] A Fractional Order Investigation of Smoking Model Using Caputo-Fabrizio Differential Operator
    Anjam, Yasir Nadeem
    Shafqat, Ramsha
    Sarris, Ioannis E.
    Ur Rahman, Mati
    Touseef, Sajida
    Arshad, Muhammad
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [20] A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment
    Moore, Elvin J.
    Sirisubtawee, Sekson
    Koonprasert, Sanoe
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)