Caputo-Fabrizio fractional differential equations with instantaneous impulses

被引:17
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
机构
[1] Univ Saida Dr Moulay Tahar, Dept Math, POB 138, En Nasr 20000, Saida, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela, Spain
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
Fractional differential equation; Caputo-Fabrizio integral of fractional order; Caputo-Fabrizio fractional derivative; instantaneous impulse; measure of noncompactness; fixed point;
D O I
10.3934/math.2021177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
引用
收藏
页码:2932 / 2946
页数:15
相关论文
共 29 条
[21]  
Monch H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P985, DOI 10.1016/0362-546X(80)90010-3
[22]   A new fractional integral associated with the Caputo-Fabrizio fractional derivative [J].
Moumen Bekkouche, M. ;
Guebbai, H. ;
Kurulay, M. ;
Benmahmoud, S. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) :1277-1288
[23]   Positive Periodic Solutions for a First Order Singular Ordinary Differential Equation Generated by Impulses [J].
Nieto, Juan J. ;
Uzal, Jose M. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (03) :637-650
[24]  
Samko SG., 1987, FRACTIONAL INTEGRALS
[25]  
Stamova I.M., 2017, Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, V1st ed.
[26]  
Tarasov VE, 2011, NONLINEAR PHYS SCI, P1
[27]  
Toledano J. M. A., 1997, OPERATOR THEORY ADV
[28]   Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices [J].
You, Zhongli ;
Wang, JinRong ;
O'Regan, Donal ;
Zhou, Yong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (03) :954-968
[29]  
ZHOU Y., 2017, Basic theory of fractional differential equations, VSecond