Caputo-Fabrizio fractional differential equations with instantaneous impulses

被引:17
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
机构
[1] Univ Saida Dr Moulay Tahar, Dept Math, POB 138, En Nasr 20000, Saida, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela, Spain
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
Fractional differential equation; Caputo-Fabrizio integral of fractional order; Caputo-Fabrizio fractional derivative; instantaneous impulse; measure of noncompactness; fixed point;
D O I
10.3934/math.2021177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
引用
收藏
页码:2932 / 2946
页数:15
相关论文
共 29 条
[1]  
Abbas S, 2018, DEGRUYTER SER NONLIN, V26, P1, DOI 10.1515/9783110553819
[2]  
Abbas S., 2015, ADV FRACTIONAL ERENT
[3]  
Abbas S., 2019, DYNAM CONT DIS SER A, V26, P89
[4]  
Abbas S., 2012, TOPICS FRACTIONAL FF
[5]   Fractional physical models based on falling body problem [J].
Acay, Bahar ;
Ozarslan, Ramazan ;
Bas, Erdal .
AIMS MATHEMATICS, 2020, 5 (03) :2608-2628
[6]   EXACT SOLUTIONS OF LINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES [J].
Agarwal, Ravi P. ;
Hristova, Snezhana ;
O'Regan, Donal .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (03) :779-791
[7]  
Albarakati W., 2018, Analele Univ. Oradea Fasc. Mat., V25, P13
[8]  
Alvarez J. C., 1985, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales de Madrid, V79, P53
[9]  
Banas J., 1980, Deutschtum
[10]  
Benchohra M., 2006, IMPULSIVE ERENTIAL E