Invariant differential operators on Hermitian symmetric spaces and their eigenvalues

被引:12
作者
Zhang, GK [1 ]
机构
[1] Univ Karlstad, Dept Math, S-65188 Karlstad, Sweden
关键词
D O I
10.1007/BF02810667
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (D) over bar be the invariant Cauchy Riemann operator and M-m = D-m (D) over bar (m) the corresponding invariant Laplacians on a bounded symmetric domain. We calculate the eigenvalues of M-m on spherical functions. In particular we prove that for a symmetric domain off rank two the operators M-1, M-3 generate all invariant differential operators. We also find the eigenvalues of the generators introduced by Shimura.
引用
收藏
页码:157 / 185
页数:29
相关论文
共 50 条
[21]   INVARIANT DIFFERENTIAL OPERATORS ON A SYMMETRIC SPACE [J].
DUFLO, M .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (02) :135-137
[22]   Isometries and Hermitian operators on complex symmetric sequence spaces [J].
Aminov B.R. ;
Chilin V.I. .
Siberian Advances in Mathematics, 2017, 27 (4) :239-252
[23]   OPERATORS INVARIANT RELATIVE TO DISPLACEMENT IN SYMMETRIC SPACES [J].
PAVLOV, EA .
SIBERIAN MATHEMATICAL JOURNAL, 1977, 18 (01) :138-142
[24]   Invariant hyperkahler structures on the cotangent bundles of Hermitian symmetric spaces [J].
Mykytyuk, IV .
SBORNIK MATHEMATICS, 2003, 194 (7-8) :1225-1250
[25]   Fatou's theorems and Hardy-type spaces for eigenfunctions of the invariant differential operators on symmetric spaces [J].
Ben Saïd, S ;
Oshima, T ;
Shimeno, N .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (16) :915-931
[27]   EIGENFUNCTIONS OF INVARIANT DIFFERENTIAL OPERATORS ON A SYMMETRIC SPACE [J].
KASHIWARA, M ;
KOWATA, A ;
MINEMURA, K ;
OKAMOTO, K ;
OSHIMA, T ;
TANAKA, M .
ANNALS OF MATHEMATICS, 1978, 107 (01) :1-39
[28]   Invariant operators on manifolds with almost Hermitian symmetric structures, III.: Standard operators [J].
Cap, A ;
Slovák, J ;
Soucek, V .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (01) :51-84
[29]   Harish-Chandra homomorphism for orthogonal symmetric pairs and radial parts of invariant differential operators on symmetric spaces [J].
Torossian, C .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1998, 126 (03) :295-354
[30]   Eigenvalues of K-invariant Toeplitz Operators on Bounded Symmetric Domains [J].
Harald Upmeier .
Integral Equations and Operator Theory, 2021, 93