FRATTINI SUBGROUP OF THE UNIT GROUP OF CENTRAL SIMPLE ALGEBRAS

被引:1
作者
Dorbidi, H. R. [1 ]
Mahdavi-Hezavehi, M. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
Global field; maximal subgroup; central simple algebra; MAXIMAL-SUBGROUPS; MULTIPLICATIVE GROUP; DIVISION ALGEBRA; GL(N) D; GL(1)(D);
D O I
10.1142/S0219498812500612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an F-central simple algebra A = M-n(D), denote by A' the derived group of its unit group A*. Here, the Frattini subgroup Phi(A*) of A* for various fields F is investigated. For global fields, it is proved that when F is a real global field, then Phi(A*) = Phi(F*)Z(A'), otherwise Phi(A*) = boolean AND(p inverted iota deg(A)) F*(p). Furthermore, it is also shown that Phi(A*) = k* whenever F is either a field of rational functions over a divisible field k or a finitely generated extension of an algebraically closed field k.
引用
收藏
页数:8
相关论文
共 15 条
[1]   Maximal subgroups of GL1(D) [J].
Akbari, S ;
Mahdavi-Hezavehi, M ;
Mahmudi, MG .
JOURNAL OF ALGEBRA, 1999, 217 (02) :422-433
[2]   Maximal subgroups of GLn (D) [J].
Akbari, S ;
Ebrahimian, R ;
Kermani, HM ;
Golsefidy, AS .
JOURNAL OF ALGEBRA, 2003, 259 (01) :201-225
[3]  
[Anonymous], 2013, ALGEBRAIC GEOM
[4]  
Draxl P.K, 1995, Skew Fields
[5]   Nilpotent maximal subgroups of GLn (D) [J].
Ebrahimian, R .
JOURNAL OF ALGEBRA, 2004, 280 (01) :244-248
[6]   UNIT GROUPS OF CENTRAL SIMPLE ALGEBRAS AND THEIR FRATTINI SUBGROUPS [J].
Fallah-Moghaddam, R. ;
Mahdavi-Hezavehi, M. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (06) :921-932
[7]   NOTE ON SUBNORMAL SUBGROUPS OF DIVISION ALGEBRAS [J].
GREENFIELD, GR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (01) :161-163
[8]   On maximal subgroups of the multiplicative group of a division algebra [J].
Hazrat, R. ;
Wadsworth, A. R. .
JOURNAL OF ALGEBRA, 2009, 322 (07) :2528-2543
[9]  
Karpilovsky G., 1988, UNIT GROUPS CLASSICA
[10]  
Lam T. Y., 2001, GRADUATE TEXTS MATH, V131