The application of physics-informed neural networks to hydrodynamic voltammetry

被引:5
|
作者
Chen, Haotian [1 ]
Kaetelhoen, Enno [2 ]
Compton, Richard G. [1 ]
机构
[1] Univ Oxford, Dept Chem, South Parks Rd, Oxford OX1 3QZ, England
[2] MHP Management & IT Beratung GmbH, Konigsallee 49, D-71638 Ludwigsburg, Germany
关键词
CHANNEL MICROBAND ELECTRODES; ELECTROCHEMISTRY; TRANSPORT; SYSTEMS; CELL;
D O I
10.1039/d2an00456a
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electrochemical problems are widely studied in flowing systems since the latter offer improved sensitivity notably for electro-analysis and the possibility of steady-state measurements for fundamental studies even with macro-electrodes. We report the exploratory use of Physics-Informed Neural Networks (PINNs) as potentially simpler, and easier way to implement alternatives to finite difference or finite element simulations to predict the effect of flow and electrode geometry on the currents observed in channel electrodes where the flow is constrained to a rectangular duct with the electrode embedded flush with the wall of the cell. Several problems are addressed including the evaluation of the transport limited current at a micro channel electrode, the transport of material between two adjacent electrodes in a channel flow and the response of an electrode where the electrode reaction follows a preceding chemical reaction. The approach is shown to give quantitative agreement in the limits for which existing solutions are known whilst offering predictions for the case of the previously unexplored CE reaction at a micro channel electrode.
引用
收藏
页码:1881 / 1891
页数:11
相关论文
共 50 条
  • [41] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [42] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    NEURAL NETWORKS, 2024, 176
  • [43] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [44] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [45] Stiff-PDEs and Physics-Informed Neural Networks
    Sharma, Prakhar
    Evans, Llion
    Tindall, Michelle
    Nithiarasu, Perumal
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 2929 - 2958
  • [46] Self-adaptive physics-informed neural networks
    McClenny, Levi D.
    Braga-Neto, Ulisses M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [47] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [48] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171
  • [49] Adversarial uncertainty quantification in physics-informed neural networks
    Yang, Yibo
    Perdikaris, Paris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 136 - 152
  • [50] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451