Data-Efficient Model Learning and Prediction for Contact-Rich Manipulation Tasks

被引:17
作者
Khader, Shahbaz Abdul [1 ,2 ]
Yin, Hang [1 ]
Falco, Pietro [3 ]
Kragic, Danica [1 ]
机构
[1] KTH, EECS, RPL, S-10044 Stockholm, Sweden
[2] ABB Future Labs, CH-5405 Baden, Switzerland
[3] ABB Corp Res, S-72178 Vasteras, Sweden
关键词
Model learning for control; contact modeling; reinforcement learning; INFERENCE; MIXTURES;
D O I
10.1109/LRA.2020.2996067
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we investigate learning forward dynamics models and multi-step prediction of state variables (long-term prediction) for contact-rich manipulation. The problems are formulated in the context of model-based reinforcement learning (MBRL). We focus on two aspects-discontinuous dynamics and data-efficiency-both of which are important in the identified scope and pose significant challenges to State-of-the-Art methods. We contribute to closing this gap by proposing a method that explicitly adopts a specific hybrid structure for the model while leveraging the uncertainty representation and data-efficiency of Gaussian process. Our experiments on an illustrative moving block task and a 7-DOF robot demonstrate a clear advantage when compared to popular baselines in low data regimes.
引用
收藏
页码:4321 / 4328
页数:8
相关论文
共 28 条
[1]  
Bender J., 2006, P 19 INT C COMPUTER, P3
[2]   Variational Inference for Dirichlet Process Mixtures [J].
Blei, David M. ;
Jordan, Michael I. .
BAYESIAN ANALYSIS, 2006, 1 (01) :121-143
[3]  
Calandra R, 2016, IEEE IJCNN, P3338, DOI 10.1109/IJCNN.2016.7727626
[4]  
Calandra R, 2015, IEEE INT CONF ROBOT, P3186, DOI 10.1109/ICRA.2015.7139638
[5]  
Chatzilygeroudis K, 2017, IEEE INT C INT ROBOT, P51, DOI 10.1109/IROS.2017.8202137
[6]  
Chua K., 2018, Advances in Neural Information Processing Systems, V31, P4754
[7]  
Deisenroth M. P., 2013, Foundations and Trends® in Robotics, V2, p1{142
[8]   Gaussian Processes for Data-Efficient Learning in Robotics and Control [J].
Deisenroth, Marc Peter ;
Fox, Dieter ;
Rasmussen, Carl Edward .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) :408-423
[9]  
Deisenroth MP, 2009, P 26 ANN INT C MACHI
[10]   Model learning for robot control: a survey [J].
Duy Nguyen-Tuong ;
Peters, Jan .
COGNITIVE PROCESSING, 2011, 12 (04) :319-340