Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation

被引:56
作者
Baleanu, Dumitru [1 ,2 ]
Inc, Mustafa [3 ]
Yusuf, Abdullahi [3 ,4 ]
Aliyu, Aliyu Isa [3 ,4 ]
机构
[1] Cankaya Univ, Dept Math, Ogretmenler Cad, TR-1406530 Ankara, Turkey
[2] Inst Space Sci, Bucharest, Romania
[3] Firat Univ, Sci Fac, TR-23119 Elazig, Turkey
[4] Fed Univ Dutse, Sci Fac, Jigawa 7156, Nigeria
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2017年 / 22卷 / 06期
关键词
modified Zakharov-Kuznetsov equation; Lie symmetry; Riemann-Liouville fractional derivative; exact solutions; conservation laws; NONLINEAR SCHRODINGERS EQUATION; 1ST INTEGRAL METHOD; DIFFERENTIAL-EQUATIONS; DEPENDENT COEFFICIENTS; SOLITON-SOLUTIONS; OPTICAL SOLITONS; WAVE SOLUTIONS; ORDER; CONSTRUCTION; PERTURBATION;
D O I
10.15388/NA.2017.6.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, Lie symmetry analysis (LSA) for the time fractional modified Zakharov-Kuznetsov (mZK) equation with Riemann-Liouville (RL) derivative is analyzed. We transform the time fractional mZK equation to nonlinear ordinary differential equation (ODE) of fractional order using its point symmetries with a new dependent variable. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. We obtained exact traveling wave solutions by using fractional D(xi)(alpha)G/G-expansion method. Using Ibragimov's nonlocal conservation method to time fractional nonlinear partial differential equations (FNPDEs), we compute conservation laws (CLs) for the mZK equation.
引用
收藏
页码:861 / 876
页数:16
相关论文
共 67 条
[1]  
Ahmed BS, 2013, P ROMANIAN ACAD A, V14, P281
[2]   Direct construction method for conservation laws of partial differential equations - Part I: Examples of conservation law classifications [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :545-566
[3]  
[Anonymous], 1994, GEN FRACTIONAL CALCU
[4]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[5]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[7]  
Baleanu D., 2010, J COMPUT NONLINEAR D
[8]  
Bekir A, 2015, ROM J PHYS, V60, P360
[9]   Solitons and other solutions to quantum Zakharov-Kuznetsov equation in quantum magneto-plasmas [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Kumar, S. ;
Johnson, S. ;
Biswas, A. .
INDIAN JOURNAL OF PHYSICS, 2013, 87 (05) :455-463
[10]   Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrodinger equations [J].
Bhrawy, Ali H. ;
Alzaidy, Jameel F. ;
Abdelkawy, Mohamed A. ;
Biswas, Anjan .
NONLINEAR DYNAMICS, 2016, 84 (03) :1553-1567