Fractional double phase Robin problem involving variable order-exponents without Ambrosetti-Rabinowitz condition

被引:8
作者
Biswas, Reshmi [1 ]
Bahrouni, Sabri [2 ,3 ]
Carvalho, Marcos L. [4 ]
机构
[1] Indian Inst Technol Delhi, Math Dept, Delhi 11016, India
[2] Univ Kairouan, IPEIK, Kairouan, Tunisia
[3] Univ Monastir, LR18ES15, Monastir, Tunisia
[4] Univ Fed Goias, Math Inst, Goiania, Go, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 03期
关键词
Variable-order fractional p(center dot)-Laplacian; Double phase problem; Robin boundary condition; Variational methods; ELLIPTIC PROBLEMS; SOBOLEV SPACES; MULTIPLICITY; EXISTENCE; GROWTH; FUNCTIONALS; EQUATIONS; PATTERNS;
D O I
10.1007/s00033-022-01724-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a fractional double phase Robin problem involving variable order and variable exponents. The non-linearity f is a Caratheodory function satisfying some hypotheses which do not include the Ambrosetti-Rabinowitz-type condition. By using a variational methods, we investigate the multiplicity of solutions.
引用
收藏
页数:24
相关论文
共 52 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   On superlinear p(x)-Laplacian equations in RN [J].
Alves, Claudianor O. ;
Liu, Shibo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) :2566-2579
[3]   Fractional double-phase patterns: concentration and multiplicity of solutions [J].
Ambrosio, Vincenzo ;
Radulescu, Vicentiu D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 :101-145
[4]   Multiple solutions for an elliptic system with indefinite Robin boundary conditions [J].
Amster, Pablo .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :603-614
[5]   Robin fractional problems with symmetric variable growth [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (10)
[6]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[7]   ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :379-389
[8]   Comparison and sub-supersolution principles for the fractional p(x)-Laplacian [J].
Bahrouni, Anouar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) :1363-1372
[9]   Strauss and Lions Type Theorems for the Fractional Sobolev Spaces with Variable Exponent and Applications to Nonlocal Kirchhoff-Choquard Problem [J].
Bahrouni, Sabri ;
Ounaies, Hichem .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
[10]   INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM [J].
BARTSCH, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1205-1216