Similarity Measure Based on Incremental Warping Window for Time Series Data Mining

被引:17
作者
Li, Hailin [1 ]
Wang, Cheng [2 ]
机构
[1] Huaqiao Univ, Coll Business Adm, Quanzhou 362021, Peoples R China
[2] Huaqiao Univ, Coll Comp Sci, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic time warping; similarity measure; time series data mining; incremental warping window; classification; DISTANCE MEASURES; PREDICTION; ALGORITHM; RECOGNITION; FEATURES; ONLINE; MOTION;
D O I
10.1109/ACCESS.2018.2889792
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A similarity measure is one of the most important tasks in the fields of time series data mining. Its quality often affects the efficiency and effectiveness of the related algorithms that need to measure the similarity between two time series in advance. Dynamic time warping is one of the most robust methods to compare one time series with another based on warping alignments. In this paper, the design of an incremental warping window is used to improve the performance of dynamic time warping. The incremental warping window is changeable for various time series with different lengths. Moreover, the improved dynamic time warping based on the novel window considers the recent alignments as much as possible, which indicates that the proposed method concentrates on more information of the recent data points than that of the previous data points. In addition, it is suitable for online similarity measure between data stream. The experimental evaluation shows that the proposed method is effective and efficient for time series mining.
引用
收藏
页码:3909 / 3917
页数:9
相关论文
共 50 条
  • [31] An Enhanced Binary Symbolic Representation for Time Series Data Mining Based Similarity
    Sun, Meiyu
    Fang, Jianan
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 7130 - 7134
  • [32] A Bit Level Representation for Time Series Data Mining with Shape Based Similarity
    Anthony Bagnall
    Chotirat “Ann” Ratanamahatana
    Eamonn Keogh
    Stefano Lonardi
    Gareth Janacek
    Data Mining and Knowledge Discovery, 2006, 13 : 11 - 40
  • [33] SDR: A Novel Similarity Measure Using Curve Fitting Method for Time Series Data Clustering
    Yang, Huahui
    Meng, Chen
    Wang, Cheng
    Yao, Yunzhi
    2019 9TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST2019), 2019, : 464 - 469
  • [34] Time-Series Data Mining
    Esling, Philippe
    Agon, Carlos
    ACM COMPUTING SURVEYS, 2012, 45 (01)
  • [35] Speed Up Similarity Search of Time Series Under Dynamic Time Warping
    Li, Zhengxin
    Guo, Jiansheng
    Li, Hailin
    Wu, Tao
    Mao, Sheng
    Nie, Feiping
    IEEE ACCESS, 2019, 7 : 163644 - 163653
  • [36] A Novel Similarity Measure for Clustering Vessel Trajectories Based on Dynamic Time Warping
    Zhao, Liangbin
    Shi, Guoyou
    JOURNAL OF NAVIGATION, 2019, 72 (02) : 290 - 306
  • [37] A Novel Similarity Measure Approach for Time Series based on PLA and DTW
    Shen Jingyi
    Zhu Dongyang
    Huang Weiping
    Liang Jun
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 7159 - 7163
  • [38] An energy-based similarity measure for time series
    Boudraa, Abdel-Ouahab
    Cexus, Jean-Christophe
    Groussat, Mathieu
    Brunagel, Pierre
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [39] An Energy-Based Similarity Measure for Time Series
    Abdel-Ouahab Boudraa
    Jean-Christophe Cexus
    Mathieu Groussat
    Pierre Brunagel
    EURASIP Journal on Advances in Signal Processing, 2008
  • [40] Similarity Measure of Time Series Based on Siamese and Sequential Neural Networks
    Li, Jiangeng
    Xu, Changjian
    Zhang, Ting
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6408 - 6413