Empirical Model for Electrical Activation of Aluminum- and Boron-Implanted Silicon Carbide

被引:7
作者
Simonka, Vito [1 ]
Hoessinger, Andreas [2 ]
Weinbub, Josef [1 ]
Selberherr, Siegfried [3 ]
机构
[1] TU Wien, Inst Microelect, Christian Doppler Lab High Performance TCAD, A-1040 Vienna, Austria
[2] Silvaco Europe Ltd, Cambridge PE27 5JL, England
[3] TU Wien, Inst Microelect, A-1040 Vienna, Austria
关键词
Activation; aluminum; annealing; boron; implantation; modeling; silicon carbide; simulation; AL+;
D O I
10.1109/TED.2017.2786086
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate modeling of the electrical properties of impurities in semiconductors is essential for the mandatory support of the development of novel semiconductor devices by means of simulations. An appropriate modeling approach to determine the activation rate of dopants in silicon carbide is currently not available, which limits the predictability of process simulations. To remedy this fact, we propose an empirical model for the electrical activation of aluminum and boron impurities in silicon carbide for various annealing temperatures and total doping concentrations. The differences of the two acceptor-type dopants are discussed according to the model predictions and the activation ratios for various processing parameters are presented. The model was implemented into Silvaco's simulation platform Victory Process and evaluated with respect to published experimental findings.
引用
收藏
页码:674 / 679
页数:6
相关论文
共 25 条
[1]   Ionization energies and electron mobilities in phosphorus- and nitrogen-implanted 4H-silicon carbide [J].
Capano, MA ;
Cooper, JA ;
Melloch, MR ;
Saxler, A ;
Mitchel, WC .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (12) :8773-8777
[2]  
Choyke W., 2013, Silicon carbide: recent major advances
[3]   1950°C Post Implantation Annealing of Al+ Implanted 4H-SiC: Relevance of the Annealing Time [J].
Fedeli, P. ;
Gorni, M. ;
Carnera, A. ;
Parisini, A. ;
Alfieri, G. ;
Grossner, U. ;
Nipoti, R. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2016, 5 (09) :P534-P539
[4]   Ion implantation technology for silicon carbide [J].
Hallen, Anders ;
Linnarsson, Margareta .
SURFACE & COATINGS TECHNOLOGY, 2016, 306 :190-193
[5]  
Hayes A. F., 2013, INTRO MEDIATION MODE, DOI DOI 10.1111/JEDM.12050
[6]   Al+ and B+ implantations into 6H-SiC epilayers and application to pn junction diodes [J].
Kimoto, T ;
Takemura, O ;
Matsunami, H ;
Nakata, T ;
Inoue, M .
JOURNAL OF ELECTRONIC MATERIALS, 1998, 27 (04) :358-364
[7]  
Kimoto T, 2014, FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY: GROWTH, CHARACTERIZATION, DEVICES, AND APPLICATIONS, P1
[8]  
Lamichhane RR, 2014, PROC INT SYMP POWER, P414, DOI 10.1109/ISPSD.2014.6856064
[9]  
Nipoti R., P INT C SIL IN PRESS
[10]   Structural and Functional Characterizations of Al+ Implanted 4H-SiC Layers and Al+ Implanted 4H-SiC p-n Junctions after 1950°C Post Implantation Annealing [J].
Nipoti, Roberta ;
Parisini, Antonella ;
Sozzi, Giovanna ;
Puzzanghera, Maurizio ;
Parisini, Andrea ;
Carnera, Alberto .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2016, 5 (10) :P621-P626