Protecting Copper Oxidation State via Intermediate Confinement for Selective CO2 Electroreduction to C2+ Fuels

被引:580
作者
Yang, Peng-Peng [1 ]
Zhang, Xiao-Long [1 ]
Gao, Fei-Yue [1 ]
Zheng, Ya-Rong [1 ]
Niu, Zhuang-Zhuang [1 ]
Yu, Xingxing [1 ]
Liu, Ren [1 ]
Wu, Zhi-Zheng [1 ]
Qin, Shuai [1 ]
Chi, Li-Ping [1 ]
Duan, Yu [1 ]
Ma, Tao [1 ]
Zheng, Xu-Sheng [3 ]
Zhu, Jun-Fa [3 ]
Wang, Hui-Juan [4 ]
Gao, Min-Rui [1 ]
Yu, Shu-Hong [1 ,2 ]
机构
[1] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei Natl Lab Phys Sci Microscale, Dept Chem,Div Nanomat & Chem,Hefei Sci Ctr CAS,CA, Hefei 230026, Peoples R China
[2] Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[3] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[4] Univ Sci & Technol China, Expt Ctr Engn & Mat Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; DIFFUSION-COEFFICIENTS; ELECTROLYTE DESIGN; RESONANCE RAMAN; CATALYST; ETHYLENE; MONOXIDE; CU2O; MORPHOLOGY;
D O I
10.1021/jacs.0c01699
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Selective and efficient catalytic conversion of carbon dioxide (CO2) into value-added fuels and feedstocks provides an ideal avenue to high-density renewable energy storage. An impediment to enabling deep CO2 reduction to oxygenates and hydrocarbons (e.g., C2+ compounds) is the difficulty of coupling carbon-carbon bonds efficiently. Copper in the +1 oxidation state has been thought to be active for catalyzing C2+ formation, whereas it is prone to being reduced to Cu-0 at cathodic potentials. Here we report that catalysts with nanocavities can confine carbon intermediates formed in situ, which in turn covers the local catalyst surface and thereby stabilizes Cu+ species. Experimental measurements on multihollow cuprous oxide catalyst exhibit a C2+ Faradaic efficiency of 75.2 +/- 2.7% at a C2+ partial current density of 267 +/- 13 mA cm(-2) and a large C2+-to-C-1 ratio of similar to 7.2. Operando Raman spectra, in conjunction with X-ray absorption studies, confirm that Cu+ species in the as-designed catalyst are well retained during CO2 reduction, which leads to the marked C2+ selectivity at a large conversion rate.
引用
收藏
页码:6400 / 6408
页数:9
相关论文
共 62 条
[41]   Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction [J].
Vasileff, Anthony ;
Xu, Chaochen ;
Jiao, Yan ;
Zheng, Yao ;
Qiao, Shi-Zhang .
CHEM, 2018, 4 (08) :1809-1831
[42]   Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO2 [J].
Vasileff, Anthony ;
Zheng, Yao ;
Qiao, Shi Zhang .
ADVANCED ENERGY MATERIALS, 2017, 7 (21)
[43]   Insights into the Low Overpotential Electroreduction of CO2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer [J].
Verma, Sumit ;
Hamasaki, Yuki ;
Kim, Chaerin ;
Huang, Wenxin ;
Lu, Shawn ;
Jhong, Huei-Ru Molly ;
Gewirth, Andrew A. ;
Fujigaya, Tsuyohiko ;
Nakashima, Naotoshi ;
Kenis, Paul J. A. .
ACS ENERGY LETTERS, 2018, 3 (01) :193-198
[44]   A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2 [J].
Verma, Sumit ;
Kim, Byoungsu ;
Jhong, Huei-Ru Molly ;
Ma, Sichao ;
Kenis, Paul J. A. .
CHEMSUSCHEM, 2016, 9 (15) :1972-1979
[45]   Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface [J].
Wakerley, David ;
Lamaison, Sarah ;
Ozanam, Francois ;
Menguy, Nicolas ;
Mercier, Dimitri ;
Marcus, Philippe ;
Fontecave, Marc ;
Mougel, Victor .
NATURE MATERIALS, 2019, 18 (11) :1222-+
[46]   Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis [J].
Wang, Yuhang ;
Wang, Ziyun ;
Dinh, Cao-Thang ;
Li, Jun ;
Ozden, Adnan ;
Golam Kibria, Md ;
Seifitokaldani, Ali ;
Tan, Chih-Shan ;
Gabardo, Christine M. ;
Luo, Mingchuan ;
Zhou, Hua ;
Li, Fengwang ;
Lum, Yanwei ;
McCallum, Christopher ;
Xu, Yi ;
Liu, Mengxia ;
Proppe, Andrew ;
Johnston, Andrew ;
Todorovic, Petar ;
Zhuang, Tao-Tao ;
Sinton, David ;
Kelley, Shana O. ;
Sargent, Edward H. .
NATURE CATALYSIS, 2020, 3 (02) :98-106
[47]   Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction [J].
Whipple, Devin T. ;
Kenis, Paul J. A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24) :3451-3458
[48]   DIFFUSION COEFFICIENTS OF NEON KRYPTON XENON CARBON MONOXIDE AND NITRIC OXIDE IN WATER AT 10-60 DEGREE C [J].
WISE, DL ;
HOUGHTON, G .
CHEMICAL ENGINEERING SCIENCE, 1968, 23 (10) :1211-&
[49]   Domino electroreduction of CO2 to methanol on a molecular catalyst [J].
Wu, Yueshen ;
Jiang, Zhan ;
Lu, Xu ;
Liang, Yongye ;
Wang, Hailiang .
NATURE, 2019, 575 (7784) :639-+
[50]   Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2 [J].
Xiao, Hai ;
Goddard, William A., III ;
Cheng, Tao ;
Liu, Yuanyue .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (26) :6685-6688