Generalization of the Bollobas-Riordan polynomial for tensor graphs

被引:9
作者
Tanasa, Adrian [1 ,2 ]
机构
[1] Univ Paris 13, CNRS, LIPN, Inst Galilee,UMR 7030, F-93430 Villetaneuse, France
[2] Inst Fiz Ingn Nucl Horia Hulubei, Dept Fiz Teoret, Magurele 077125, Romania
关键词
GROUP FIELD-THEORY; PARAMETRIC REPRESENTATION; MODELS; INVARIANT; SURFACES; SCALAR;
D O I
10.1063/1.3605312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tensor models are used nowadays for implementing a fundamental theory of quantum gravity. We define here a polynomial T encoding the supplementary topological information. This polynomial is a natural generalization of the Bollobas-Riordan polynomial (used to characterize matrix graphs) and is different from the Gurau polynomial [R. Gurau, Ann. Henri Poincare 11, 565 (2010)], defined for a particular class of tensor graphs, the colorable ones. The polynomial T is defined for both colorable and non-colorable graphs and it is proved to satisfy the deletion/contraction relation. A non-trivial example of a non-colorable graphs is analyzed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605312]
引用
收藏
页数:17
相关论文
共 63 条
[1]  
[Anonymous], ARXIVGRQC0607032
[2]   EPRL/FK group field theory [J].
Ben Geloun, J. ;
Gurau, R. ;
Rivasseau, V. .
EPL, 2010, 92 (06)
[3]   Linearized group field theory and power-counting theorems [J].
Ben Geloun, Joseph ;
Krajewski, Thomas ;
Magnen, Jacques ;
Rivasseau, Vincent .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (15)
[4]   On motives associated to graph polynomials [J].
Bloch, Spencer ;
Esnault, Helene ;
Kreimer, Dirk .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (01) :181-225
[5]   A Tutte polynomial for coloured graphs [J].
Bollobás, B ;
Riordan, O .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :45-93
[6]   A polynomial of graphs on surfaces [J].
Bollobás, B ;
Riordan, O .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :81-96
[7]   A polynomial invariant of graphs on orientable surfaces [J].
Bollobás, B ;
Riordan, O .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :513-531
[8]   Bubble Divergences from Cellular Cohomology [J].
Bonzom, Valentin ;
Smerlak, Matteo .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (03) :295-305
[9]   The Massless Higher-Loop Two-Point Function [J].
Brown, Francis .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (03) :925-958
[10]  
Chapuy G., 2009, PhD thesis