Inverse Design of Inflatable Soft Membranes Through Machine Learning

被引:45
作者
Forte, Antonio Elia [1 ,2 ,3 ]
Hanakata, Paul Z. [4 ]
Jin, Lishuai [1 ]
Zari, Emilia [1 ,2 ]
Zareei, Ahmad [1 ]
Fernandes, Matheus C. [1 ]
Sumner, Laura
Alvarez, Jonathan [1 ]
Bertoldi, Katia [1 ]
机构
[1] Harvard Univ, JA Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Politecn Milan, Dept Elect Informat & Bioengn, I-20133 Milan, Italy
[3] Kings Coll London, Dept Engn, London WC2R 2LS, England
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
inverse design; machine learning; membranes; shape morphing; soft matter; NEURAL-NETWORKS; ACTUATORS; SURFACES; ORIGAMI;
D O I
10.1002/adfm.202111610
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Across fields of science, researchers have increasingly focused on designing soft devices that can shape-morph to achieve functionality. However, identifying a rest shape that leads to a target 3D shape upon actuation is a non-trivial task that involves inverse design capabilities. In this study, a simple and efficient platform is presented to design pre-programmed 3D shapes starting from 2D planar composite membranes. By training neural networks with a small set of finite element simulations, the authors are able to obtain both the optimal design for a pixelated 2D elastomeric membrane and the inflation pressure required for it to morph into a target shape. The proposed method has potential to be employed at multiple scales and for different applications. As an example, it is shown how these inversely designed membranes can be used for mechanotherapy applications, by stimulating certain areas while avoiding prescribed locations.
引用
收藏
页数:8
相关论文
共 60 条
[1]   Prediction and optimization of mechanical properties of composites using convolutional neural networks [J].
Abueidda, Diab W. ;
Almasri, Mohammad ;
Ammourah, Rami ;
Ravaioli, Umberto ;
Jasiuk, Iwona M. ;
Sobh, Nahil A. .
COMPOSITE STRUCTURES, 2019, 227
[2]  
[Anonymous], 2018, ARXIV PREPRINT ARXIV
[3]   Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation [J].
Barnes, Leandra A. ;
Marshall, Clement D. ;
Leavitt, Tripp ;
Hu, Michael S. ;
Moore, Alessandra L. ;
Gonzalez, Jennifer G. ;
Longaker, Michael T. ;
Gurtner, Geoffrey C. .
ADVANCES IN WOUND CARE, 2018, 7 (02) :47-56
[4]  
Bengio, 2019, ARXIV PREPRINT ARXIV
[5]   Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization [J].
Bessa, M. A. ;
Pellegrino, S. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2018, 139 :174-188
[6]   Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible [J].
Bessa, Miguel A. ;
Glowacki, Piotr ;
Houlder, Michael .
ADVANCED MATERIALS, 2019, 31 (48)
[7]  
Bishop ChristopherM., 2006, Machine Learning, V128, P9, DOI DOI 10.1117/1.2819119
[8]   Shape-shifting structured lattices via multimaterial 4D printing [J].
Boley, J. William ;
van Rees, Wim M. ;
Lissandrello, Charles ;
Horenstein, Mark N. ;
Truby, Ryan L. ;
Kotikian, Arda ;
Lewis, Jennifer A. ;
Mahadevan, L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (42) :20856-20862
[9]   A numerical method to optimize the design of a space inflatable membrane reflector [J].
Bouzidi, Rabah ;
Lecieux, Yann .
ACTA ASTRONAUTICA, 2012, 74 :69-78
[10]   From flat sheets to curved geometries: Origami and kirigami approaches [J].
Callens, Sebastien J. P. ;
Zadpoor, Amir A. .
MATERIALS TODAY, 2018, 21 (03) :241-264