Full-space dual-helicity decoupled metasurface for a high-efficiency multi-folded reflective antenna

被引:11
作者
Yang, Weixu [1 ]
Chen, Ke [1 ]
Dong, Shufang [1 ]
Wu, Linxiao [1 ]
Qu, Kai [1 ]
Zhao, Junming [1 ]
Jiang, Tian [1 ]
Feng, Yijun [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSMITARRAY ANTENNA; WAVE PLATE; BAND; PHASE;
D O I
10.1364/OE.471942
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The independent tailoring of electromagnetic waves with different circular-polarized (CP) wavefront in both reflection and transmission channels is of broad scientific and technical interest, offering ultimate degrees of freedom in designing advanced devices with the merits of functionality integration and spatial exploitation. However, most metasurfaces only provide dependent wavefront control of dual-helicity in a single channel, restricting their applications to limited practical scenarios. Herein, we propose a full-space dual-helicity decoupled metasurface and apply it to assemble a multi-folded reflective antenna (MFRA) in the microwave regime. A multilayered chiral meta-atom is designed and optimized to reflect a particular helical wave while allowing the orthogonal helical wave to penetrate through, with simultaneous full span of phase modulations in both channels. When a uniform reflection and a hyperbolic transmission phase profile is imposed simultaneously on the metasurface in a polarization-selective manner, it can be engineered to conduct specular reflection for one helical wave and convergent transmission of the other helical wave. Combining the proposed metasurface with a metallic plate as a bottom reflector and an integrated microstrip patch antenna in the center of metasurface as a feed, a MFRA is realized with a low profile, high efficiency, and high polarization purity in a broad frequency band. The proposed design method of the dual-helicity decoupled metasurface and its antenna application provide opportunities for high-performance functional devices, promising more potential in future communication and detection systems.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:33613 / 33626
页数:14
相关论文
共 50 条
[1]   Ultrathin Single Layer Metasurfaces with Ultra-Wideband Operation for Both Transmission and Reflection [J].
Akram, Muhammad Rizwan ;
Ding, Guowen ;
Chen, Ke ;
Feng, Yijun ;
Zhu, Weiren .
ADVANCED MATERIALS, 2020, 32 (12)
[2]   High Efficiency Ultrathin Transmissive Metasurfaces [J].
Akram, Muhammad Rizwan ;
Mehmood, Muhammad Qasim ;
Bai, Xudong ;
Jin, Ronghong ;
Premaratne, Malin ;
Zhu, Weiren .
ADVANCED OPTICAL MATERIALS, 2019, 7 (11)
[3]   Perfect control of reflection and refraction using spatially dispersive metasurfaces [J].
Asadchy, V. S. ;
Albooyeh, M. ;
Tcvetkova, S. N. ;
Diaz-Rubio, A. ;
Ra'di, Y. ;
Tretyakov, S. A. .
PHYSICAL REVIEW B, 2016, 94 (07)
[4]   Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings [J].
Bomzon, Z ;
Biener, G ;
Kleiner, V ;
Hasman, E .
OPTICS LETTERS, 2002, 27 (13) :1141-1143
[5]   Bifunctional Pancharatnam-Berry Metasurface with High-Efficiency Helicity-Dependent Transmissions and Reflections [J].
Cai, Tong ;
Wang, Guang-Ming ;
Xu, He-Xiu ;
Tang, Shi-Wei ;
Li, Haipeng ;
Liang, Jian-Gang ;
Zhuang, Ya-Qiang .
ANNALEN DER PHYSIK, 2018, 530 (01)
[6]   Novel Wideband Polarization Rotating Metasurface Element and Its Application for Wideband Folded Reflectarray [J].
Cao, Yue ;
Che, Wenquan ;
Yang, Wanchen ;
Fan, Chong ;
Xue, Quan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (03) :2118-2127
[7]  
Chekhova M., 2021, POLARIZATION LIGHT C
[8]   A Reconfigurable Active Huygens' Metalens [J].
Chen, Ke ;
Feng, Yijun ;
Monticone, Francesco ;
Zhao, Junming ;
Zhu, Bo ;
Jiang, Tian ;
Zhang, Lei ;
Kim, Yongjune ;
Ding, Xumin ;
Zhang, Shuang ;
Alu, Andrea ;
Qiu, Cheng-Wei .
ADVANCED MATERIALS, 2017, 29 (17)
[9]   Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering [J].
Chen, Ke ;
Feng, Yijun ;
Yang, Zhongjie ;
Cui, Li ;
Zhao, Junming ;
Zhu, Bo ;
Jiang, Tian .
SCIENTIFIC REPORTS, 2016, 6
[10]   Full-Color Complex-Amplitude Vectorial Holograms Based on Multi-Freedom Metasurfaces [J].
Deng, Zi-Lan ;
Jin, Mingke ;
Ye, Xuan ;
Wang, Shuai ;
Shi, Tan ;
Deng, Junhong ;
Mao, Ningbin ;
Cao, Yaoyu ;
Guan, Bai-Ou ;
Alu, Andrea ;
Li, Guixin ;
Li, Xiangping .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (21)