Deep learned recurrent type-3 fuzzy system: Application for renewable energy modeling/prediction

被引:71
作者
Cao, Yan [1 ]
Raise, Amir [2 ]
Mohammadzadeh, Ardashir [3 ]
Rathinasamy, Sakthivel [4 ]
Band, Shahab S. [5 ]
Mosavi, Amirhosein [6 ]
机构
[1] Xian Technol Univ, Sch Mech Engn, Xian 710021, Peoples R China
[2] Xian Technol Univ, Dept Mech Engn, Xian, Shaanxi, Peoples R China
[3] Univ Bonab, Dept Elect Engn, Bonab, Iran
[4] Bharathiar Univ, Dept Appl Math, Coimbatore 641046, Tamil Nadu, India
[5] Natl Yunlin Univ Sci & Technol, Coll Future, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu, Yunlin 64002, Taiwan
[6] Obuda Univ, John von Neumann Fac Informat, H-1034 Budapest, Hungary
关键词
Fuzzy logic; Renewable energy; Learning algorithm; Deep learning; Solar energy; Wind turbines; MANAGEMENT;
D O I
10.1016/j.egyr.2021.07.004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A deep learned recurrent type-3 (RT3) fuzzy logic system (FLS) with nonlinear consequent part is presented for renewable energy modeling and prediction. Beside the rule parameters, the values of horizontal slices and membership function (MF) parameters are also optimized. The stability of suggested learning scheme is guaranteed. The proposed method is applied for modeling of both solar panels and wind turbines. By the use of experimental setup and generated real-world date sets, the applicability of suggested approach is shown. Comparison with convectional FLSs demonstrates the superiority of the suggested scheme. (C) 2021 Published by Elsevier Ltd.
引用
收藏
页码:8115 / 8127
页数:13
相关论文
共 41 条
[1]   Interval Type 2 Fuzzy-Logic-Based Solar Power MPPT Algorithm Connected to AC Grid [J].
Abbadi, Amel ;
Hamidia, Fethia ;
Morsli, Abdelkader ;
Bellatrache, Habiba ;
Boukhetala, Djamel ;
Nazli, Lazhari .
INTERNATIONAL JOURNAL OF ENERGY OPTIMIZATION AND ENGINEERING, 2020, 9 (01) :110-121
[2]   A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid [J].
Aly, Hamed H. H. .
ELECTRIC POWER SYSTEMS RESEARCH, 2020, 182
[3]   Forecast modeling and performance assessment of solar PV systems [J].
Ameur, Arechkik ;
Berrada, Asmae ;
Loudiyi, Khalid ;
Aggour, Mohamed .
JOURNAL OF CLEANER PRODUCTION, 2020, 267
[4]   Non-singleton fuzzy control for multi-synchronization of chaotic systems [J].
Balootaki, Mohammad Ahmadi ;
Rahmani, Hossein ;
Moeinkhah, Hossein ;
Mohammadzadeh, Ardashir .
APPLIED SOFT COMPUTING, 2021, 99 (99)
[6]   High-Speed Interval Type-2 Fuzzy Systems for Dynamic Parameter Adaptation in Harmony Search for Optimal Design of Fuzzy Controllers [J].
Castillo, Oscar ;
Valdez, Fevrier ;
Peraza, Cinthia ;
Yoon, Jin Hee ;
Geem, Zong Woo .
MATHEMATICS, 2021, 9 (07)
[7]   Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS) [J].
De Andres, Javier ;
Lorca, Pedro ;
de Cos Juez, Francisco Javier ;
Sanchez-Lasheras, Fernando .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) :1866-1875
[8]   Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland [J].
Deveci, Muhammet ;
Cali, Umit ;
Kucuksari, Sadik ;
Erdogan, Nuh .
ENERGY, 2020, 198
[9]  
Gismero A, 2019, 2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER)
[10]   Renewable energy accommodation potential evaluation of distribution network: A hybrid decision-making framework under interval type-2 fuzzy environment [J].
Gong, Xiaomin ;
Yang, Man ;
Du, Puliang .
JOURNAL OF CLEANER PRODUCTION, 2021, 286