Neoclassical modeling of the radial electric field and comparison with measurements in the TJ-II stellarator

被引:3
作者
Gutierrez-Tapia, C. [1 ]
Martinell, J. J. [2 ]
Lopez-Bruna, D. [3 ]
Melnikov, A. V. [4 ]
机构
[1] Inst Nacl Invest, Mexico City, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City, DF, Mexico
[3] Asociac EURATOM CIEMAT, Madrid, Spain
[4] Nucl Fus Inst, Res Ctr Kurchatov Inst, Moscow, Russia
来源
15TH LATIN AMERICAN WORKSHOP ON PLASMA PHYSICS (LAWPP 2014) AND 21ST IAEA TM ON RESEARCH USING SMALL FUSION DEVICES (RUSFD) | 2015年 / 591卷
关键词
TRANSPORT; PLASMA; ROTATION;
D O I
10.1088/1742-6596/591/1/012011
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The results of the radial electric field measurements by Heavy Ion Beam Probe (HIBP) in the TJ-II stellarator are compared with neoclassical transport computations. The role played by several plasma features is identified by studying a reduced analytical transport model, using both actual density and temperature profiles and representative model profiles for varying density. Additional electric field calculations are carried out numerically with the Astra code using three different expressions for the neoclassical transport coefficients in order to identify the common features characterizing E,, particularly the sign reversal. For regimes with a wide variation of collisionality, a general qualitative agreement between modeling and experimental data is shown. The obtention of roots for E, depends critically upon the temperature and density profiles as they determine the plasma collisional regime. It is found that the root transition (i.e. E, sign reversal) occurs for a specific range of a collisionality parameter, consistent for all models employed. It is found that when density and temperature profiles give real roots of the electric field the pressure is almost constant. Discharges with high radial gradient of E, are found to correlate well with high confinement regimes.
引用
收藏
页数:15
相关论文
共 35 条
[11]   Overview of TJ-II experiments [J].
Hidalgo, C ;
Alejaldre, C ;
Alonso, A ;
Alonso, J ;
Almoguera, L ;
de Aragón, F ;
Ascasíbar, E ;
Baciero, A ;
Balbín, R ;
Blanco, E ;
Botija, J ;
Brañas, B ;
Calderón, E ;
Cappa, A ;
Carmona, JA ;
Carrasco, R ;
Castejón, F ;
Cepero, JR ;
Chmyga, AA ;
Doncel, J ;
Dreval, NB ;
Eguilior, S ;
Eliseev, L ;
Estrada, T ;
Ferreira, JA ;
Fernández, A ;
Fontdecaba, JM ;
Fuentes, C ;
García, A ;
García-Cortés, I ;
Gonçalves, B ;
Guasp, J ;
Herranz, J ;
Hidalgo, A ;
Jiménez, R ;
Jiménez, JA ;
Jiménez-Rey, D ;
Kirpitchev, I ;
Khrebtov, SM ;
Komarov, AD ;
Kozachok, AS ;
Krupnik, L ;
Lapayese, F ;
Liniers, M ;
López-Bruna, D ;
López-Fraguas, A ;
López-Rázola, J ;
López-Sánchez, A ;
de la Luna, E ;
Marcon, G .
NUCLEAR FUSION, 2005, 45 (10) :S266-S275
[12]   On the radial scale of fluctuations in the TJ-II stellarator [J].
Hidalgo, C ;
Pedrosa, MA ;
Castellano, J ;
Van Milligen, B ;
Jiménez, JA ;
Fraguas, AL ;
Sánchez, E .
PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 :A313-A321
[13]   THEORY OF PLASMA TRANSPORT IN TOROIDAL CONFINEMENT SYSTEMS [J].
HINTON, FL ;
HAZELTINE, RD .
REVIEWS OF MODERN PHYSICS, 1976, 48 (02) :239-308
[14]   TRANSITION OF THE RADIAL ELECTRIC-FIELD BY ELECTRON-CYCLOTRON HEATING IN THE CHS HELIOTRON TORSATRON [J].
IDEI, H ;
IDA, K ;
SANUKI, H ;
YAMADA, H ;
IGUCHI, H ;
KUBO, S ;
AKIYAMA, R ;
ARIMOTO, H ;
FUJIWARA, M ;
HOSOKAWA, M ;
MATSUOKA, K ;
MORITA, S ;
NISHIMURA, K ;
OHKUBO, K ;
OKAMURA, S ;
SAKAKIBARA, S ;
TAKAHASHI, C ;
TAKITA, Y ;
TSUMORI, K ;
YAMADA, I .
PHYSICAL REVIEW LETTERS, 1993, 71 (14) :2220-2223
[15]   Modeling of transport processes in stellarators [J].
Kovrizhnykh, L. M. .
PLASMA PHYSICS REPORTS, 2006, 32 (12) :988-995
[16]   Steady solutions to neoclassical transport equations and the absence of bifurcated states [J].
Kovrizhnykh, LM .
PLASMA PHYSICS REPORTS, 2005, 31 (01) :14-25
[17]  
Kovrizhnykh LM, 1999, PLASMA PHYS REP+, V25, P760
[18]   Transport in threshold plasmas for a confinement transition in the TJ-II stellarator [J].
Lopez-Bruna, D. ;
Velasco, J. L. ;
Ochando, M. ;
Guasp, J. ;
Lopez-Fraguas, A. ;
van Milligen, B. P. ;
Ascasibar, E. ;
Liniers, M. ;
Estrada, T. ;
Fontdecaba, J. M. ;
Pastor, I. ;
Tafalla, D. ;
Medina, F. ;
Eliseev, L. ;
Melnikov, A. ;
Perfilov, S. ;
Herranz, J. ;
Zurro, B. ;
McCarthy, K. J. ;
Tabares, F. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (01)
[19]  
Lopez-Bruna D., 2010, 1201 CIEM
[20]   Internal electron transport barrier due to neoclassical ambipolarity in the Helically Symmetric Experiment [J].
Lore, J. ;
Guttenfelder, W. ;
Briesemeister, A. ;
Anderson, D. T. ;
Anderson, F. S. B. ;
Deng, C. B. ;
Likin, K. M. ;
Spong, D. A. ;
Talmadge, J. N. ;
Zhai, K. .
PHYSICS OF PLASMAS, 2010, 17 (05)