Perturbation bounds for Monte Carlo within Metropolis via restricted approximations

被引:20
|
作者
Medina-Aguayo, Felipe [1 ]
Rudolf, Daniel [2 ,3 ]
Schweizer, Nikolaus [4 ]
机构
[1] Univ Reading Whiteknights, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
[2] Univ Gottingen, Inst Math Stochast, Goldschmidtstr 3-5, D-37077 Gottingen, Germany
[3] Felix Bernstein Inst Math Stat, Goldschmidtstr 3-5, D-37077 Gottingen, Germany
[4] Tilburg Univ, Dept Econometr & OR, POB 90153, NL-5000 LE Tilburg, Netherlands
基金
英国生物技术与生命科学研究理事会;
关键词
Markov chain Monte Carlo; Restricted approximation; Monte Carlo within Metropolis; Intractable likelihood; GEOMETRIC ERGODICITY; MARKOV-CHAINS; CONVERGENCE; HASTINGS;
D O I
10.1016/j.spa.2019.06.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis-Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the nth step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:2200 / 2227
页数:28
相关论文
共 50 条
  • [1] Metropolis Monte Carlo deconvolution
    Amini, AM
    VISUAL INFORMATION PROCESSING VIII, 1999, 3716 : 252 - 262
  • [2] Metropolis Monte Carlo Annealing
    Amini, AM
    VISUAL INFORMATION PROCESSING IX, 2000, 4041 : 163 - 171
  • [3] TIGHT BOUNDS FOR AMERICAN OPTIONS VIA MULTILEVEL MONTE CARLO
    Belomestny, Denis
    Ladkau, Marcel
    Schoenmakers, John
    2012 WINTER SIMULATION CONFERENCE (WSC), 2012,
  • [4] Simple Monte Carlo and the metropolis algorithm
    Mathe, Peter
    Novak, Erich
    JOURNAL OF COMPLEXITY, 2007, 23 (4-6) : 673 - 696
  • [5] ERROR BOUNDS FOR AUGMENTED TRUNCATION APPROXIMATIONS OF MARKOV CHAINS VIA THE PERTURBATION METHOD
    Liu, Yuanyuan
    Li, Wendi
    ADVANCES IN APPLIED PROBABILITY, 2018, 50 (02) : 645 - 669
  • [6] Thermodynamic perturbation coefficients for confined alkanes via Monte Carlo simulations
    Amancio, Rodolfo Jose
    Franco, Luis Fernando Mercier
    FLUID PHASE EQUILIBRIA, 2025, 593
  • [7] The metropolis Monte Carlo method in statistical physics
    Landau, DP
    MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 : 134 - 146
  • [8] Monte Carlo approximations of the Neumann problem
    Maire, Sylvain
    Tanre, Etienne
    MONTE CARLO METHODS AND APPLICATIONS, 2013, 19 (03): : 201 - 236
  • [9] Metropolis Monte Carlo simulation of lattice animals
    vanRensburg, EJJ
    Madras, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23): : 8035 - 8066
  • [10] Review of Metropolis Monte Carlo Image Enhancements
    Amini, Abolfazl M.
    VISUAL INFORMATION PROCESSING XX, 2011, 8056