Predicting Aromatic Amine Mutagenicity with Confidence: A Case Study Using Conformal Prediction

被引:17
|
作者
Norinder, Ulf [1 ,2 ]
Myatt, Glenn [3 ]
Ahlberg, Ernst [4 ]
机构
[1] Karolinska Inst, Unit Toxicol Sci, Swetox, SE-15136 Sodertalje, Sweden
[2] Stockholm Univ, Dept Comp & Syst Sci, Box 7003, SE-16407 Kista, Sweden
[3] Leadscope, 1393 Dublin Rd, Columbus, OH 43215 USA
[4] AstraZeneca R&D Gothenburg, Drug Safety & Metab Innovat Med & Early Dev Biote, SE-43183 Molndal, Sweden
基金
瑞典研究理事会; 美国国家卫生研究院;
关键词
aromatic amines; mutagenicity; conformal prediction; confidence; random forest; APPLICABILITY DOMAIN; CHEMICAL-STRUCTURE; GENETIC TOXICITY; CARCINOGENICITY; CLASSIFICATION; COVALENT;
D O I
10.3390/biom8030085
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The occurrence of mutagenicity in primary aromatic amines has been investigated using conformal prediction. The results of the investigation show that it is possible to develop mathematically proven valid models using conformal prediction and that the existence of uncertain classes of prediction, such as both (both classes assigned to a compound) and empty (no class assigned to a compound), provides the user with additional information on how to use, further develop, and possibly improve future models. The study also indicates that the use of different sets of fingerprints results in models, for which the ability to discriminate varies with respect to the set level of acceptable errors.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Predicting With Confidence: Using Conformal Prediction in Drug Discovery
    Alvarsson, Jonathan
    McShane, Staffan Arvidsson
    Norinder, Ulf
    Spjuth, Ola
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 110 (01) : 42 - 49
  • [2] Predicting aromatic amine mutagenicity: past, present and future
    Naven, Russell T.
    MUTAGENESIS, 2012, 27 (06) : 789 - 789
  • [3] Predicting with confidence: Toxicological in silico model building and prediction using conformal prediction
    Norinder, U.
    Svensson, F.
    TOXICOLOGY LETTERS, 2019, 314 : S33 - S33
  • [4] Predicting Ames Mutagenicity Using Conformal Prediction in the Ames/QSAR International Challenge Project
    Norinder, Ulf
    Ahlberg, Ernst
    Carlsson, Lars
    MUTAGENESIS, 2019, 34 (01) : 33 - 40
  • [5] Predicting Off-Target Binding Profiles With Confidence Using Conformal Prediction
    Lampa, Samuel
    Alvarsson, Jonathan
    Mc Shane, Steffan Arvidsson
    Berg, Arvid
    Ahlberg, Ernst
    Spjuth, Ola
    FRONTIERS IN PHARMACOLOGY, 2018, 9
  • [6] Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: A case study using aromatic amine mutagenicity
    Ahlberg, Ernst
    Amberg, Alexander
    Beilke, Lisa D.
    Bower, David
    Cross, Kevin P.
    Custer, Laura
    Ford, Kevin A.
    Van Gompel, Jacky
    Harvey, James
    Honma, Masamitsu
    Jolly, Robert
    Joossens, Elisabeth
    Kemper, Raymond A.
    Kenyon, Michelle
    Kruhlak, Naomi
    Kuhnke, Lara
    Leavitt, Penny
    Naven, Russell
    Neilan, Claire
    Quigley, Donald P.
    Shuey, Dana
    Spirkl, Hans-Peter
    Stavitskaya, Lidiya
    Teasdale, Andrew
    White, Angela
    Wichard, Joerg
    Zwickl, Craig
    Myatt, Glenn J.
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2016, 77 : 1 - 12
  • [7] Predicting Amazon customer reviews with deep confidence using deep learning and conformal prediction
    Norinder, Ulf
    Norinder, Petra
    JOURNAL OF MANAGEMENT ANALYTICS, 2022, 9 (01) : 1 - 16
  • [8] Predicting skin sensitizers with confidence - Using conformal prediction to determine applicability domain of GARD
    Forreryd, Andy
    Norinder, Ulf
    Lindberg, Tim
    Lindstedt, Malin
    TOXICOLOGY IN VITRO, 2018, 48 : 179 - 187
  • [9] Predicting skin sensitizers with confidence - using conformal prediction to determine applicability domain of GARD
    Johansson, H.
    Forreryd, A.
    Norinder, U.
    Lindberg, T.
    Lindstedt, M.
    TOXICOLOGY LETTERS, 2018, 295 : S127 - S127
  • [10] Predicting Larch Casebearer damage with confidence using Yolo network models and conformal prediction
    Norinder, Ulf
    Lowry, Stephanie
    REMOTE SENSING LETTERS, 2023, 14 (10) : 1023 - 1035