The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis

被引:161
作者
Li, Jun [1 ]
Yu, Miao [1 ]
Geng, Ling-Ling [1 ]
Zhao, Jie [1 ]
机构
[1] Wuhan Univ, Coll Life Sci, Key Lab Minist Educ Plant Dev Biol, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Arabidopsis; arabinogalactan proteins; glycosylphosphatidylinositol (GPI) anchor; microspore development; pollen intine; sterility; GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEINS; GENOME-WIDE IDENTIFICATION; POLLEN GRAIN DEVELOPMENT; EXINE PATTERN-FORMATION; TUBE GROWTH; CORTICAL MICROTUBULES; METALLOTHIONEIN GENE; FUNCTIONAL-ANALYSIS; EXPRESSION ANALYSIS; MALE-STERILITY;
D O I
10.1111/j.1365-313X.2010.04344.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabinogalactan proteins are widely distributed in plant tissues and cells, and may function in the growth and development of higher plants. To our knowledge, there is currently no direct evidence concerning the involvement of fasciclin-like arabinogalactan proteins (FLA) in sexual reproduction in Arabidopsis. In this study, Arabidopsis FLA3 was found to be specifically expressed in pollen grains and tubes. Subcellular localization showed that FLA3 anchors tightly to the plasma membrane, and its glycosylphosphatidylinositol anchor may affect its localization. FLA3-RNA interference transgenic plants had approximately 50% abnormal pollen grains (including shrunken and wrinkled phenotypes) which lacked viability. Cytological observations revealed that pollen abortion occurred during the transition from uninucleate microspores to bicellular pollens, with abnormal cellulose distribution seen by calcofluor white staining. Transmission electron microscopy showed that the basic structure of the exine layer in aberrant pollen was normal, but the intine layer appeared to have some abnormalities. Taken together, these results suggest that FLA3 is involved in microspore development and may affect pollen intine formation, possibly by participating in cellulose deposition. In FLA3-overexpressing transgenic plants, defective elongation of the stamen filament and reduced female fertility led to short siliques with low seed set, which suggested that ectopic expression of FLA3 in tissues may reduce or disrupt cell growth and then result in defects throughout the plant.
引用
收藏
页码:482 / 497
页数:16
相关论文
共 106 条
[1]   The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes [J].
Aarts, MGM ;
Hodge, R ;
Kalantidis, K ;
Florack, D ;
Wilson, ZA ;
Mulligan, BJ ;
Stiekema, WJ ;
Scott, R ;
Pereira, A .
PLANT JOURNAL, 1997, 12 (03) :615-623
[2]   A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis [J].
Acosta-García, G ;
Vielle-Calzada, JP .
PLANT CELL, 2004, 16 (10) :2614-2628
[3]   An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato [J].
Albert, Markus ;
Belastegui-Macadam, Xana ;
Kaldenhoff, Ralf .
PLANT JOURNAL, 2006, 48 (04) :548-556
[4]   Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana [J].
Ariizumi, T ;
Hatakeyama, K ;
Hinata, K ;
Inatsugi, R ;
Nishida, I ;
Sato, S ;
Kato, T ;
Tabata, S ;
Toriyama, K .
PLANT JOURNAL, 2004, 39 (02) :170-181
[5]   Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division [J].
Barrero, RA ;
Umeda, M ;
Yamamura, S ;
Uchimiya, H .
PLANT CELL, 2002, 14 (01) :149-163
[6]   EXPRESSION OF FASCICLIN-I AND FASCICLIN-II GLYCOPROTEINS ON SUBSETS OF AXON PATHWAYS DURING NEURONAL DEVELOPMENT IN THE GRASSHOPPER [J].
BASTIANI, MJ ;
HARRELSON, AL ;
SNOW, PM ;
GOODMAN, CS .
CELL, 1987, 48 (05) :745-755
[7]   Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements [J].
Bate, N ;
Twell, D .
PLANT MOLECULAR BIOLOGY, 1998, 37 (05) :859-869
[8]   Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis [J].
Borner, GHH ;
Lilley, KS ;
Stevens, TJ ;
Dupree, P .
PLANT PHYSIOLOGY, 2003, 132 (02) :568-577
[9]   Prediction of glycosylphosphatidylinositol-anchored proteins in arabidopsis. A genomic analysis [J].
Borner, GHH ;
Sherrier, DJ ;
Stevens, TJ ;
Arkin, IT ;
Dupree, P .
PLANT PHYSIOLOGY, 2002, 129 (02) :486-499
[10]   Class III pistil-specific extensin-like proteins from tobacco have characteristics of arabinogalactan proteins [J].
Bosch, M ;
Knudsen, JS ;
Derksen, J ;
Mariani, C .
PLANT PHYSIOLOGY, 2001, 125 (04) :2180-2188