A differential geometric approach to the geometric mean of symmetric positive-definite matrices

被引:501
作者
Moakher, M [1 ]
机构
[1] Tunis El Manar Univ, Natl Engn Sch Tunis, Lab Math & Numer Modeling Engn Sci, ENIT,LAMSIN, Tunis 1002, Tunisia
关键词
geometric mean; positive-definite symmetric matrices; Riemannian distance; geodesics;
D O I
10.1137/S0895479803436937
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce metric-based means for the space of positive-definite matrices. The mean associated with the Euclidean metric of the ambient space is the usual arithmetic mean. The mean associated with the Riemannian metric corresponds to the geometric mean. We discuss some invariance properties of the Riemannian mean and we use differential geometric tools to give a characterization of this mean.
引用
收藏
页码:735 / 747
页数:13
相关论文
共 27 条
[1]   Bounds for the differences of matrix means [J].
Alic, M ;
Mond, B ;
Pecaric, J ;
Volenec, V .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) :119-123
[2]  
ANDERSON WN, 1975, SIAM J APPL MATH, V28, P60
[3]  
[Anonymous], 1958, CANADIAN J MATH
[4]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[5]   A rigorous framework for diffusion tensor calculus [J].
Batchelor, PG ;
Moakher, M ;
Atkinson, D ;
Calamante, F ;
Connelly, A .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (01) :221-225
[6]  
Berger M, 1988, DIFFERENTIAL GEOMETR
[7]   Averaging anisotropic elastic constant data [J].
Cowin, SC ;
Yang, GY .
JOURNAL OF ELASTICITY, 1997, 46 (02) :151-180
[8]  
Curtis M.L., 1979, Matrix Groups
[9]   Computational techniques for real logarithms of matrices [J].
Dieci, L ;
Morini, B ;
Papini, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (03) :570-593
[10]  
EBLERLEIN PB, 1996, GEOMETRY NONPOSITIVE