Global existence for reaction-diffusion systems modelling ignition

被引:20
作者
Herrero, MA [1 ]
Lacey, AA
Velazquez, JJL
机构
[1] Univ Complutense Madrid, Fac Math, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1007/s002050050091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The pair of parabolic equations u(t) = a Delta u + f(u,v), (1) v(t) = b Delta b - f(u, v), (2) with a > 0 and b > 0 models the temperature and concentration for an exothermic chemical reaction for which just one species controls the reaction rate f. Of particular interest is the case where f(u, v)= ve(u), (3) which appears in the Frank-Kamenetskii approximation to Arrhenius-type reactions, We show here that for a large choice of the nonlinearity f(u,v) in (1), (2) (including the model case (3)), the corresponding initial-value problem for(1), (2) in the whole space with bounded initial data has a solution which exists for all times. Finite-time blow-up might occur, though, for other choices of function f(ld, v), and we discuss here a linear example which strongly hints at such behaviour.
引用
收藏
页码:219 / 251
页数:33
相关论文
共 25 条
[1]   Liouville theorems and blow up behaviour in semilinear reaction diffusion systems [J].
Andreucci, D ;
Herrero, MA ;
Velazquez, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01) :1-53
[2]  
[Anonymous], SIAM J MATH ANAL
[3]  
[Anonymous], 1968, ANN SCUOLA NORM-SCI
[4]   ON THE GLOBAL EXISTENCE OF SOLUTIONS OF A REACTION-DIFFUSION EQUATION WITH EXPONENTIAL NONLINEARITY [J].
BARABANOVA, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (03) :827-831
[5]   COMPLETE BLOW-UP AFTER TMAX FOR THE SOLUTION OF A SEMILINEAR HEAT-EQUATION [J].
BARAS, P ;
COHEN, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (01) :142-174
[6]  
BEBERENES J, 1992, J DIFF EQS, V96, P105
[7]   FINITE-TIME BLOWUP FOR A PARTICULAR PARABOLIC-SYSTEM [J].
BEBERNES, J ;
LACEY, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (06) :1415-1425
[8]  
Bebernes J., 1989, MATH PROBLEMS COMBUS
[9]  
de Guzman M, 1975, SPRINGER LECT NOTES, V481
[10]  
Duoandikoetxea J., 1991, ANAL FOURIER