Probabilistic Analysis of Simulation-Based Games

被引:15
作者
Vorobeychik, Yevgeniy [1 ]
机构
[1] Univ Penn, Sandia Natl Labs, Philadelphia, PA 19104 USA
来源
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION | 2010年 / 20卷 / 03期
关键词
Game theory; simulation and modeling; simulation; Nash equilibrium;
D O I
10.1145/1842713.1842719
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The field of game theory has proved to be of great importance in modeling interactions between self-interested parties in a variety of settings. Traditionally, game-theoretic analysis relied on highly stylized models to provide interesting insights about problems at hand. The shortcoming of such models is that they often do not capture vital detail. On the other hand, many real strategic settings, such as sponsored search auctions and supply-chains, can be modeled in high resolution using simulations. Recently, a number of approaches have been introduced to perform analysis of game-theoretic scenarios via simulation-based models. The first contribution of this work is the asymptotic analysis of Nash equilibria obtained from simulation-based models. The second contribution is to derive expressions for probabilistic bounds on the quality of Nash equilibrium solutions obtained using simulation data. In this vein, we derive very general distribution-free bounds, as well as bounds which rely on the standard normality assumptions, and extend the bounds to infinite games via Lipschitz continuity. Finally, we introduce a new maximum-a-posteriori estimator of Nash equilibria based on game-theoretic simulation data and show that it is consistent and almost surely unique.
引用
收藏
页数:25
相关论文
共 29 条
[1]  
[Anonymous], 2004, OPTIMAL STAT DECISIO
[2]  
[Anonymous], 2007, Proceedings of the 2007 Winter Simulation Conference
[3]  
[Anonymous], P ACM S THEOR COMP S, DOI DOI 10.1145/1132516.1132527
[4]  
[Anonymous], THESIS U MICHIGAN
[5]  
[Anonymous], P ACM C EL COMM EC 0
[6]  
[Anonymous], THESIS U MICHIGAN
[7]   On the exact distribution of the maximum of absolutely continuous dependent random variables [J].
Arellano-Valle, Reinaldo B. ;
Genton, Marc G. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (01) :27-35
[8]  
Chang YP, 2000, STAT SINICA, V10, P1369
[9]  
CHENG SF, 2004, P AAMAS 04 WORKSH GA
[10]  
Collins J., 2004, The supply Chain management Game for the 2005 trading Agent Competition