Novel soft computing hybrid model for predicting shear strength and failure mode of SFRC beams with superior accuracy

被引:38
作者
Ben Chaabene, Wassim [1 ]
Nehdi, Moncef L. [1 ]
机构
[1] Western Univ, Dept Civil & Environm Engn, London, ON, Canada
来源
COMPOSITES PART C: OPEN ACCESS | 2020年 / 3卷
关键词
Atom search optimization; Artificial neural network; Ductility; Toughness; Failure mode; Shear strength; Fiber-reinforced concrete; Beam; Statistical metrics;
D O I
10.1016/j.jcomc.2020.100070
中图分类号
TB33 [复合材料];
学科分类号
摘要
The ability of steel fibers to enhance the shear strength and post-cracking behavior of plain concrete stimulated remarkable increase in using steel fiber-reinforced concrete (SFRC) in construction. However, steel fibers increase the complexity of assessing the shear behavior. Developing accurate models to estimate the shear capacity is crucial to satisfying requirements of design codes. While various empirical models have been developed for this purpose, they suffer from multiple shortcomings. Machine learning techniques have recently emerged as a strong contender for mitigating such drawbacks and providing better accuracy. In this study, a novel metaheuristic atom search optimization (ASO) algorithm based on molecular dynamics was coupled with artificial neural networks (ANN) to forecast the shear capacity of SFRC beams and overcome drawbacks of standalone models. Moreover, four classification models (naive Bayes, support vector machine (SVM), decision tree, and k-nearest neighbor) were used to forecast the failure mode of SFRC beams. Performance assessment of the models revealed that the ASO-ANN model achieved most reliable predictive accuracy for shear strength, while the k-nearest neighbors model was the most accurate for failure mode classification. The ability to predict simultaneously the shear strength and failure mode with superior accuracy opens immense opportunities for the shear design of new SFRC beams and for selecting innovative retrofitting strategies for existing shear deficient structures.
引用
收藏
页数:15
相关论文
共 67 条
[51]   Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index [J].
Saltelli, Andrea ;
Annoni, Paola ;
Azzini, Ivano ;
Campolongo, Francesca ;
Ratto, Marco ;
Tarantola, Stefano .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (02) :259-270
[52]   Development of prediction models for shear strength of SFRCB using a machine learning approach [J].
Sarveghadi, Masoud ;
Gandomi, Amir H. ;
Bolandi, Flamed ;
Alavi, Amir H. .
NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07) :2085-2094
[53]  
Shahnewaz M, 2014, ACI STRUCT J, V111, P851
[54]   Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression [J].
Sharifzadeh, Mandi ;
Sikinioti-Lock, Alexandra ;
Shah, Nilay .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 :513-538
[55]  
SHARMA AK, 1986, J AM CONCRETE I, V83, P624
[56]   Shear response of lightweight steel fiber reinforced concrete members without stirrups [J].
Shoaib, Abdoladel ;
Lubell, Adam S. ;
Bindiganavile, Vivek S. .
MATERIALS AND STRUCTURES, 2015, 48 (10) :3141-3157
[57]  
Singh A, 2016, PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, P1310
[58]  
Stone A., 2013, THEORY INTERMOLECULA, P352
[59]   Global sensitivity analysis using polynomial chaos expansions [J].
Sudret, Bruno .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2008, 93 (07) :964-979
[60]   Effect of steel fibers on the shear behavior of high strength concrete beams [J].
Tahenni, T. ;
Chemrouk, M. ;
Lecompte, T. .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 105 :14-28